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Abstract
Background and objectives  The C9orf72 expansion is the most common genetic cause of frontotemporal dementia (FTD) 
and/or motor neuron disease (MND). Corticospinal degeneration has been described in post-mortem neuropathological 
studies in these patients, especially in those with MND. We used MRI to analyze white matter (WM) volumes in presymp-
tomatic and symptomatic C9orf72 expansion carriers and investigated whether its measure may be helpful in predicting the 
onset of symptoms.
Methods  We studied 102 presymptomatic C9orf72 mutation carriers, 52 symptomatic carriers: 42 suffering from FTD and 
11 from MND, and 75 non-carriers from the Genetic Frontotemporal dementia Initiative (GENFI). All subjects underwent 
T1-MRI acquisition. We used FreeSurfer to estimate the volume proportion of WM in the brainstem regions (midbrain, pons, 
and medulla oblongata). We calculated group differences with ANOVA tests and performed linear and non-linear regressions 
to assess group-by-age interactions.
Results  A reduced WM ratio was found in all brainstem subregions in symptomatic carriers compared to both noncarriers 
and pre-symptomatic carriers. Within symptomatic carriers, MND patients presented a lower ratio in pons and medulla 
oblongata compared with FTD patients. No differences were found between presymptomatic carriers and non-carriers. 
Clinical severity was negatively associated with the WM ratio. C9orf72 carriers presented greater age-related WM loss than 
non-carriers, with MND patients showing significantly more atrophy in pons and medulla oblongata.
Discussion  We find consistent brainstem WM loss in C9orf72 symptomatic carriers with differences related to the clinical 
phenotype supporting the use of brainstem measures as neuroimaging biomarkers for disease tracking.

Keywords  Frontotemporal dementia · C9orf72 · GENFI · Brainstem

Introduction

Frontotemporal dementia (FTD) refers to a heterogeneous 
group of neurodegenerative disorders that mainly affects the 
frontal and temporal lobes of the brain producing behavioral 
and language impairment [1]. Amyotrophic lateral sclero-
sis (ALS) is the most frequent motor neuron disease. It is 
caused by the neurodegeneration of motor neurons and the 
corticospinal and corticobulbar tracts leading to progres-
sive weakness and muscular atrophy [2]. Due to the scien-
tific advances in the last decades, it is now recognized that 
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FTD and ALS are part of a clinical, neuropathological, and 
genetic continuum [3–6].

Although frequency varies geographically, the pathological 
hexanucleotide expansion in the chromosome 9 open read-
ing frame 72 (C9orf72) gene is the most common genetic 
cause of FTD, and ALS [7, 8]. The C9orf72 repeat expan-
sion is inherited with an autosomal dominant pattern with 
almost full penetrance leading to disease onset at a mean age 
of 58 years, although a wide range of age of onset (20–90 s) 
has been described [9]. The correlation between parental age 
at onset and individual age at onset for C9orf72 expansion 
carriers is weak (r = 0.32), and thus, not useful for individual 
predictions [9]. In the same way, whether the symptom onset 
would appear in form of FTD, or ALS remains unpredictable. 
However, future disease-modifying drugs might be useful for 
both clinical phenotypes and treatments might be more use-
ful when used in early or even presymptomatic phases of the 
disease. For that reason, there is a need for biomarkers that are 
able to provide information about the proximity of onset and 
track disease progression in both phenotypes. In this sense, 
cohorts of mutation carriers, such as the genetic frontotem-
poral initiative (GENFI), provide the opportunity to study the 
first stages of the disease and to identify markers of symptom 
onset and progression [10].

Previous studies have described structural changes in 
presymptomatic FTD subjects using brain MRI [11–15]. 
Concerning C9orf72 carriers, previous studies have shown 
presymptomatic brain changes in the thalamus, cerebellum, 
hippocampus, amygdala, and hypothalamus [16, 17]. Most 
of these studies have focused on grey matter. In contrast, 
white matter (WM) degeneration has received comparatively 
less attention but demonstrates early and widespread WM 
integrity loss in C9orf72 carriers [18].

The neuropathological examination of ALS patients 
reveals loss of motor neurons and the consequent degenera-
tion of the corticospinal and corticobulbar tracts [19, 20]. 
This degeneration leads to lateral sclerosis of the spinal cord 
which gives the name to the disease. In addition to spinal 
cord changes, ALS patients also present relevant atrophy 
of the white matter areas that contain the corticospinal and 
corticobulbar tracts at the brainstem, especially the pyramids 
in the medulla oblongata. Previous work has demonstrated 
that changes in the spinal cord and brainstem in ALS can be 
detected in vivo using structural MRI [21, 22]. In a recent 
study, Querin et al. reported significant WM reduction in the 
spinal cord of presymptomatic C9orf72 carriers using cervi-
cal cord MRI [23]. Assessing WM changes in the brainstem 
presents some potential benefits from cervical spinal cord 
evaluation, as the possibility of being measured with other 
brain changes in the brain MRI.

In this work, we investigate the utility of brainstem WM 
loss as a biomarker for C9orf72 patients. We hypothesize 
that symptomatic C9orf72 carriers would present more WM 

loss in the brainstem compared to non-carriers, especially 
in those patients with motor neuron symptoms. We also aim 
to study whether WM loss is identifiable in presymptomatic 
C9orf72 carriers.

Materials and methods

Participants

Two hundred thirty five participants’ data were obtained 
from the data freeze 4 (DF4) of the GENFI, an international 
multicenter study of known carriers of a pathogenic muta-
tion or at risk of carrying a mutation because a first-degree 
relative was a known symptomatic carrier [11]. Symp-
tomatic subjects were FTD or ALS patients carrying the 
C9orf72 pathogenic expansion. Presymptomatic and noncar-
riers subjects were all first-degree relatives of C9orf72 muta-
tion carriers who consent to be tested for their genetic status.

All participants’ imaging data were acquired at each time 
point using 3 T on scanners from three different manufactur-
ers: Philips Healthcare (Koninklijke Philips NV, Amsterdam, 
Netherlands), GE Healthcare Life Sciences (General Elec-
tric, Boston, MA, USA) and Siemens Healthcare Diagnos-
tics (Siemens, Erlangen, Germany). Protocols were designed 
to harmonize across scanners and sites as much as possible 
[11]. Subjects were classified into four groups according to 
their genetic status (carriers or non-carriers) and their clini-
cal diagnosis as follows: (a) non-carriers; (b) presymptomatic 
C9orf72 carriers if no diagnostic criteria were fulfilled, (c) 
symptomatic C9orf72 carriers with FTD presentations in the 
form of behavioral variant FTD [24] or primary progressive 
aphasia [25] and (d) symptomatic C9orf72 carriers with MND 
presentation in form of ALS or ALS-FTD [26, 27]. The dis-
ease stage of all participants was scored following the global 
and sum of boxes Clinical Dementia Rating adapted to FTD 
patients (CDR® + NACC-FTLD) rating scale [28]. The sever-
ity of motor neuron symptoms was scored with the ALS Func-
tional Rating Scale-Revised (ALSFRS-R), a validated rating 
instrument for monitoring the progression of disability in ALS 
patients [29]. The ALSFRS-R obtains a final index of disabil-
ity by scoring 12 different motor and respiratory items from 4 
(no disability) to 0 (marked disability). Written informed con-
sent was obtained from all participants. All procedures were 
approved by local ethics committees at each site.

MRI acquisition and processing

Participants underwent a 1.1-mm isotropic resolution volu-
metric T1 MRI imaging on a 3T scan using the sequences 
defined within the GENFI consortium. Nineteen scanners 
were used across different sites. MRIs of all subjects were 
downloaded from GENFI database and processed using 
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FreeSurfer version 6.0 (http://​surfer.​nmr.​mgh.​harva​rd.​edu/) 
in the same center.

After the standard FreeSurfer segmentation and parcel-
lation [30–32], we used an additional FreeSurfer pipeline to 
segment the brainstem region and its three main structures 
(midbrain, pons, and medulla oblongata) [33]. Figure 1 repre-
sents the imaging methodology to obtain the brainstem region 
segmentation. We assessed the WM parcel for the brainstem 
structures by multiplying each of the regions by the WM mask. 
To remove the effect of brain size, we calculated the ratio of 
WM for each of its structures (midbrain, pons, and medulla 
oblongata) using the total volume of the corresponding region 
(region-WM volume/region-whole volume). All images were 
visually inspected and manually corrected when needed.

Statistical analysis

Differences in demographic data between groups were 
assessed using ANOVA test for continuous variables and 
Fisher test for dichotomous data. Post-hoc studies were 
assessed for both cases to identify the pair-wise group dif-
ferences, using T-tests or Fisher test accordingly. Statistical 
significance was set at p < 0.05, with corrections for multiple 
comparisons using the Benjamini–Hochberg procedure.

We used ANOVA test to study group differences in 
the WM ratio for the brainstem subregions. Age at base-
line, sex and scanner were used as covariates. Then, Tuk-
ey’s HSD test was used to identify pairwise differences 
between groups with Benjamini–Hochberg corrections for 
multiple comparisons. We compared the non-carriers, the 
presymptomatic carriers, carriers with FTD, and carriers 
with MND with the same procedure. Differences in the 
WM ratio between CDR® + NACC-FTLD global stages 
were assessed using Kruskal–Wallis test for all carriers, 
while Spearman’s rank correlation coefficient was used 
to study the relationship between the WM ratio and the 
CDR® + NACC-FTLD sum of boxes and the ALSFRS-R. 
We evaluated multiple linear and non-linear regressions 

(logarithmic, polynomial to the second, third and fourth 
order) to test the association between the WM ratio 
(dependent variable) and the genetic status, age, and their 
interaction. For these analyses we added scanner and sex 
as covariates. Models were compared using R2 and the 
Akaike information criterion (AIC). R (https://​www.r-​
proje​ct.​org/) version 4.0.5 was used for all analyses.

Results

Demographic and clinical characteristics 
of participants

After the data quality assessment the sample was reduced 
to 229 participants due to the segmentation problems 
identified. The final sample used in the analyses included: 
102 presymptomatic carriers, 52 symptomatic carriers 
(41 FTD and 11 ALS or ALS-FTD), and 75 non-carriers 
(Table 1). Some of the acquisitions (N = 43 subjects) had 
a limited Field of View, so it was not possible to meas-
ure the entire medulla oblongata ROI. Thus, these images 
were not included in the sub-analyses of this region (21 
presymptomatic, 7 symptomatic, and 15 non-carriers).

We found significant differences between the four groups 
(non-carriers, presymptomatic, symptomatic-FTD, sympto-
matic-ALS) in sex and age. Both symptomatic groups were 
older than the non-carriers and presymptomatic groups 
(p < 0.0001). Therefore, these variables were included as 
covariates in all further analyses. No significant differences 
were found in any demographic or clinical variables between 
non-carriers and presymptomatic carriers (Table 1).

Group differences in brainstem WM ratio

Non-carriers showed WM ratios very close to 1 (0.96 for the 
midbrain, 0.99 for the pons, and 0.97 for the medulla). No 
differences were found in any region between the presymp-
tomatic and the non-carrier groups. The C9orf72 FTD group 

Fig. 1   The brainstem segmenta-
tion for all the matters for two 
different views. Orange repre-
sents the midbrain region, yel-
low represents the pons region 
and blue represents the medulla 
oblongata region. In this case, 
this subject is a healthy control

http://surfer.nmr.mgh.harvard.edu/
https://www.r-project.org/
https://www.r-project.org/
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showed a lower WM ratio than non-carriers and presymp-
tomatic carriers in all regions (p < 0.01 in the medulla, and 
p < 0.0001 in the midbrain and pons). The C9orf72 MND 
group showed a lower WM ratio than the non-carriers and 
the presymptomatic carriers in all regions (p < 0.0001 in all 
comparisons). The MND group also showed a lower WM 
ratio than the FTD group in the medulla (p < 0.0001), and 
pons (p < 0.0001; (Fig. 2).

WM ratio across the severity of cognitive and motor 
symptoms

When studying the relationship between the WM ratio with 
the global CDR® + NACC-FTLD rating scale for all carriers 
subjects, we observed that higher clinical scores were sig-
nificatively associated with lower WM ratios in all brainstem 
regions (Kruskal–Wallis p < 0.001 for all regions; Fig. 3A). 
Pairwise comparisons between CDR® + NACC-FTLD 
stages were performed for consecutive stages, depicting 
significant differences between the CDR = 0.5 and CDR = 1 

Table 1   Baseline demographics 
for controls, presymptomatic 
and both symptomatic carriers 
groups

Brainstem subregions volumes and WM ratio. Show the group differences for the whole volume/WM ratio
EYO estimated years to onset, FTD frontotemporal dementia, f female, m male, MND motor neuron dis-
ease, sd standard deviation
*Statistical differences (p < 0.05) compared with non-carriers and presymptomatic carriers
**Statistical differences (p < 0.0001) compared with non-carriers and presymptomatic carriers

Non-carriers C9orf72 
presymptomatic 
carriers

C9orf72
FTD carriers

C9orf72
MND carriers

Number of participants 75 102 41 11
Sex (f/m) 48/27 63/39 16/25* 4/7*
Age, years
Mean (sd)

45.2 (12.6) 44.9 (11.8) 62.8 (8.4)** 62.6 (6.4)**

Age at onset, years
Mean (sd)

– – 57.2 (9.5) 59.5 (6.1)

EYO, years
Mean (sd)

− 15.0 (11.6) − 13.8 (11.9) 5.1 (6.1)** 1.4 (4.0)**

CDR® + NACC-FTLD Global
Median (range)

– – 2 (1–3) 2 (1–3)

CDR® + NACC-FTLD Sum of Boxes
Median (range)

– – 12.5 (1–22) 7.5 (1–18)

Fig. 2   Boxplot of the WM 
ratio volume of each brainstem 
region at baseline. Indicates 
*p < 0.05, **p < 0.01 and 
***p < 0.001, ****p < 0.0001
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stages in the midbrain (p < 0.05). Additionally, moderate 
significant negative correlations between the WM ratio and 
the CDR® + NACC FTLD sum of boxes were also found for 
all brainstem regions (midbrain r = − 0.57, pons r = − 0.49 
and medulla oblongata r = − 0.45; p < 0.0001 all; Fig. 3B).

To assess if the WM ratio was correlated to the severity 
of the motor neuron symptoms, we evaluate its relationship 
with the ALSFRS-R score in C9or72 carriers (Fig. 3C). 
We found a weak negative correlation in pons (r =− 0.37, 

p < 0.05), but a moderate negative correlation in midbrain 
(r = − 0.45; p < 0.001) and medulla (r =− 0.46, p < 0.01).

Brainstem WM ratio and age trajectories according 
to the genetic status

When comparing the relationship between the WM ratio 
and age, we found that carriers and non-carriers showed 
similar trajectories until the 6th decade of life. After this 

Fig. 3   A Boxplot of WM ratio 
across the CDR® + NACC-
FTLD Global stages for the 
carriers’ participants. Pair-
wise comparisons between 
stages were performed only 
for consecutive stages, finding 
significant differences between 
the 0.5 and the 1 stages in the 
midbrain: *p < 0.05, B Scat-
ter plots of WM ratio by the 
CDR® + NACC-FTLD Sum 
Of Boxes. Red lines represent 
the correlation analyses, C 
Scatter plots of WM ratio by 
the ALSFRS-R in the different 
regions for the carriers’ partici-
pants. Red lines represent the 
correlation analyses
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age, carriers presented a greater loss of WM ratio than non-
carriers, especially in the midbrain (Fig. 4A). The multi-
ple linear regression comparing carriers and non-carriers 
showed similar results (Table 2). For both groups, age was 
related to lower WM ratios in the midbrain (p < 0.001). 

Carriers showed a greater loss of WM ratio by age than 
non-carriers in the midbrain (p < 0.05), suggesting a further 
loss of WM due to neurodegeneration. No other statistical 
differences were found between carriers and non-carriers. 
Due to the distribution of the trajectories, we also explored 

Fig. 4   Scatter plot showing the 
correlation between the WM 
ratio and age for each of the 
studied groups: the whole brain-
stem, the midbrain, the pons, 
and the medulla oblongata

Table 2   Multiple linear regression coefficients for comparing carriers and non-carriers

Significant group differences (p<0.05) are highlighted in bold

Midbrain Pons Medulla
β sd p β sd p β sd p

Intercept 1.0121 0.0146  < 0.0001 1.0149 0.0126  < 0.0001 1.0284 0.0319  < 0.0001
Age − 0.0010 0.0003  < 0.001 − 0.0003 0.0002 0.183 − 0.0007 0.0006 0.282
Scanner − 0.0004 0.0004 0.257 − 0.0006 0.0003 0.076 − 0.0010 0.0009 0.261
Sex
 Female vs male − 0.0056 0.0042 0.196 − 0.0050 0.0037 0.177 − 0.0159 0.0095 0.096

Genetic status
 Carriers vs noncarriers 0.02865 0.0172 0.098 0.0194 0.0148 0.192 0.0247 0.0368 0.502

Age × genetic status
 Carriers vs noncarriers − 0.0008 0.0004 0.019 − 0.0005 0.0003 0.080 − 0.0007 0.0007 0.342



1579Journal of Neurology (2023) 270:1573–1586	

1 3

non-linear regressions, but they did not improve the linear 
model significatively.

Brainstem WM ratio and age trajectories according 
to the clinical status

Finally, we assessed the brainstem WM trajectories by age 
according to the clinical status to evaluate if subjects with 
different clinical diagnoses present different trajectories of 
brainstem WM during the disease. In that sense, the MND 
group showed a greater loss of WM by age in all regions 
compared to FTD patients, the medulla being the region 
with the highest effect of age in WM loss for this group of 
patients (Fig. 4B; Table 3).

Discussion

In the present study, we used brain MRI scans from the 
GENFI consortium to investigate whether corticospinal 
and corticobulbar tracts neurodegeneration is measurable 
in the brainstem structures of C9orf72 carriers. Symptomatic 
C9orf72 expansion carriers showed consistent alterations in 
brainstem WM that correlated with clinical severity. Sub-
jects with motor neuron symptoms presented more WM loss 
in the brainstem than those without motor symptoms.

Brainstem neuroimaging abnormalities have been inves-
tigated by means of semi-automated volumetry methods, 
especially in progressive supranuclear palsy [21, 34]. Con-
cerning C9orf72 expansion carriers, previous work found 
no structural volumetric gray matter (GM) impairment in 
the brainstem [16, 35]. However, the evaluation of brain-
stem WM in C9of72 was lacking. Here, we developed a 
measure of WM degeneration consisting of the proportion 
of the brainstem volume occupied by WM. We chose the 

proportion of WM instead of its whole volume to avoid dif-
ferences due to different brain sizes. Assessed in the non-
carriers as controls, this WM ratio showed values close to 1, 
reflecting that, in normal conditions, the relative GM volume 
in the brainstem is scarce. However, these high values might 
reflect an overestimation of the WM volumes. Previous neu-
roimaging studies have shown that small brainstem pathways 
might be artificially enlarged due to the inclusion of crossing 
fibers [36, 37]. Despite this limitation, our work found differ-
ences between groups, reflecting the utility of this measure 
as a neuroimaging biomarker.

We found a lower brainstem WM ratio in symptomatic 
C9orf72 carriers compared to non-carriers regardless of 
their clinical phenotype. These differences were found 
in the three sub-structures (midbrain, pons, and medulla 
oblongata), suggesting widespread neurodegeneration of 
the corticospinal tracts. No differences were found between 
presymptomatic carriers and controls. This finding would 
suggest that the neurodegeneration of the WM tracts appears 
near the onset of the symptoms, pointing to the brainstem 
WM ratio as a biomarker of conversion in C9orf72 carri-
ers. Whether the WM neurodegeneration occurs before or 
after the symptom’s onset remains unclear. Our study did not 
show WM changes in the presymptomatic carriers’ group. 
By contrast, Querin et al. recently observed spinal cord WM 
atrophy in presymptomatic C9orf72 carriers who were older 
than 40 years [23]. This could suggest that the spinal cord 
would show signs of WM alterations before the brainstem, or 
it could be the result of including participants who were far 
from the estimated year of onset in our study. The observed 
relationship between the brainstem WM ratio and age sheds 
light on this point. Overall, all subjects showed a mild loss 
of WM over the years with both groups, carriers, and non-
carriers, showing no differences until the 6th decade of life 

Table 3   Multiple linear regression coefficients for assessing the brainstem WM trajectories by age according to the clinical status

Significant group differences (p<0.05) are highlighted in bold

Midbrain Pons Medulla
β sd p β sd p β sd p

Intercept 1.0110 0.0137  < 0.0001 1.0110 0.0116  < 0.0001 1.0146 0.0271  < 0.0001
Age − 0.0010 0.0003  < 0.001 − 0.0003 0.0002 0.151 − 0.0006 0.0005 0.274
Scanner − 0.0005 0.0004 0.149 − 0.0003 0.0003 0.307 − 0.0002 0.0008 0.822
Sex
 Female vs male 0.0001 0.0004 0.998 − 0.0004 0.0034 0.895 − 0.0033 0.0084 0.691

Clinical group
 Presymptomatic vs control − 0.0083 0.0176 0.638 − 0.0056 0.0143 0.694 − 0.0175 0.0341 0.608
 FTD vs control − 0.0045 0.0380 0.905 − 0.0061 0.0308 0.841 − 0.1444 0.0730 0.049
 MND vs control 0.1992 0.0931 0.033 0.3871 0.0756  < 0.0001 0.6220 0.1735  < 0.001

Age × clinical group
 Presymptomatic vs control 0.0001 0.0004 0.729 0.0001 0.0003 0.773 0.0004 0.0007 0.553
 FTD vs control − 0.0005 0.0006 0.369 0.0003 0.0005 0.500 0.0019 0.0012 0.118
 MND vs control − 0.0037 0.0015 0.013 − 0.0070 0.0012  < 0.0001 − 0.0122 0.0028  < 0.0001
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when C9orf72 carriers suffer a greater WM loss, especially 
in the midbrain. Of note, this decade of life coincides with 
the onset of symptoms reported recently by Moore et al., 
reinforcing the idea of the brainstem WM ratio as a possible 
biomarker of conversion [9].

In consonance with neuropathological studies, patients 
with MND showed significantly more atrophy in the pons 
and especially in the medulla oblongata compared to FTD. 
Similar results were found in the multivariate analyses, 
where patients presenting in form of MND suffered fur-
ther loss of WM ratio than the other groups, particularly in 
the medulla oblongata (Fig. 4B). We hypothesize that this 
greater loss of WM in C9orf72 carriers is due to the neuro-
degeneration of the corticospinal and corticobulbar tracts 
in patients who develop motor neuron symptoms. These 
results suggest that the brainstem WM ratio, especially in 
the medulla oblongata, could be an interesting biomarker to 
predict motor neuron symptoms in C9orf72 carriers. This 
finding is particularly relevant because the form of onset in 
C9orf72 carriers is highly unpredictable, and patients with 
motor neuron symptoms have a worse overall prognosis. 
Moreover, most neuroimage biomarkers studied in C9orf72 
carriers have focused on cortical atrophy, but MND patients 
may present only subtle cortical atrophy, especially in those 
with bulbar onset where, theoretically, brainstem changes 
were supposed to be more remarkable.

Additionally, we evaluated if the WM ratio could moni-
tor the disease progression. For this purpose, we assessed the 
WM ratio across the different disease stages measured with 
the CDR® + NACC-FTLD scale. Here, a biological gradient 
was found, with patients in more advanced stages showing 
lower WM ratios. This loss of WM was greater in the mid-
brain with significant differences between the CDR = 0.5 and 
the CDR = 1 stages in the region. We also found a negative 
correlation between the CDR® + NACC-FTLD sum of boxes 
and the WM ratio in the brainstem. This correlation was, again, 
strongest in the midbrain (r = − 0.60). We also evaluated the 
correlation between the WM ratio and the severity of the motor 
neuron symptoms in C9orf72 carriers. A negative correlation 
between the WM ratio and the ALSFRS-R was found in all the 
brainstem regions. However, this correlation was highly influ-
enced by subjects without motor neuron symptoms.

Our study has some limitations. First, it is important to 
consider that the brainstem WM visualization is challeng-
ing due to the small size of the pathways, the high density 
of their distributions, lower contrast, and image distortions 
associated with in vivo acquisitions. As mentioned before, 
brain volumetry could overestimate WM volumes. Despite 
this possible limitation, we found that our methodology is 
valid to find differences between groups. To support and 
complement our results, other MRI modalities such as Dif-
fusion tensor imaging (DTI) may be studied in the future. 
Another limitation is the relatively small sample size. Even 

using data from a multicentric study, in some analyses, espe-
cially for the MND subgroup, the number of subjects was 
low, due to the low prevalence of the disease. This small 
number of MND patients did not allow us to study differ-
ences between subjects with bulbar or spinal onset.

In conclusion, our data suggest that WM loss in the brain-
stem might be a marker of clinical conversion and disease pro-
gression monitoring in C9orf72 carriers, especially in carriers 
presenting with motor neuron symptoms. Additional studies 
with extended follow-up data might be needed to confirm these 
findings.
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