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Abstract

Background: Neuroinflammation has been shown to be an important patho-

physiological disease mechanism in frontotemporal dementia (FTD). This

includes activation of microglia, a process that can be measured in life through

assaying different glia-derived biomarkers in cerebrospinal fluid. However, only

a few studies so far have taken place in FTD, and even fewer focusing on the

genetic forms of FTD. Methods: We investigated the cerebrospinal fluid con-

centrations of TREM2, YKL-40 and chitotriosidase using immunoassays in 183

participants from the Genetic FTD Initiative (GENFI) study: 49 C9orf72 (36

presymptomatic, 13 symptomatic), 49 GRN (37 presymptomatic, 12 sympto-

matic) and 23 MAPT (16 presymptomatic, 7 symptomatic) mutation carriers

and 62 mutation-negative controls. Concentrations were compared between

groups using a linear regression model adjusting for age and sex, with 95%

bias-corrected bootstrapped confidence intervals. Concentrations in each group

were correlated with the Mini-Mental State Examination (MMSE) score using

non-parametric partial correlations adjusting for age. Age-adjusted z-scores

were also created for the concentration of markers in each participant, investi-

gating how many had a value above the 95th percentile of controls. Results:

Only chitotriosidase in symptomatic GRN mutation carriers had a concentra-

tion significantly higher than controls. No group had higher TREM2 or YKL-40

concentrations than controls after adjusting for age and sex. There was a signifi-

cant negative correlation of chitotriosidase concentration with MMSE in pre-

symptomatic GRN mutation carriers. In the symptomatic groups, for TREM2

31% of C9orf72, 25% of GRN, and 14% of MAPT mutation carriers had a con-

centration above the 95th percentile of controls. For YKL-40 this was 8%

C9orf72, 8% GRN and 0% MAPT mutation carriers, whilst for chitotriosidase it

was 23% C9orf72, 50% GRN, and 29% MAPT mutation carriers. Conclusions:

Although chitotriosidase concentrations in GRN mutation carriers were the

only significantly raised glia-derived biomarker as a group, a subset of mutation

carriers in all three groups, particularly for chitotriosidase and TREM2, had ele-

vated concentrations. Further work is required to understand the variability in

concentrations and the extent of neuroinflammation across the genetic forms of

FTD. However, the current findings suggest limited utility of these measures in

forthcoming trials.
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Introduction

Frontotemporal dementia (FTD) is a neurodegenerative

disorder that leads to progressive behavioral, linguistic and

motor disturbances, often at a relatively young age. It is

genetic in about a third of cases, with mutations in

C9orf72, GRN and MAPT being the commonest causes.1

However, little is known about the underlying pathophy-

siological processes that occur in FTD. The study of

asymptomatic at-risk genetic FTD family members has

provided a unique window into the pathogenesis and evo-

lution of the disorder over time with deeply phenotyped

cohort studies such as the Genetic FTD Initiative (GENFI)

allowing in vivo analysis of biomarkers indicative of cellu-

lar dysfunction.2–4 An area of recent interest in FTD has

been that of chronic neuroinflammation and glial dysfunc-

tion and how these processes contribute to disease.5,6

Neuroinflammation is a complex and multistage pro-

cess involving activation of specific cells such as microglia

within the central nervous system and release of a series

of pro- and anti-inflammatory factors. Studies in FTD

have recently started to focus on measuring microglial

activation during life through cerebrospinal fluid (CSF)

biomarkers. Such measures include soluble triggering

receptor expressed on myeloid cells 2 (TREM2), which

has been extensively investigated in Alzheimer’s disease

(AD),7–9 and the chitinases. This second group includes

chitotriosidase (CHIT1) and YKL-40 (otherwise known as

chitinase-3-like protein 1 or CHI3L1). Investigation of

each of these measures has so far shown mixed results,

with some studies reporting higher levels and some sug-

gesting that there are no differences from controls.10–16

The majority of these studies have examined an undiffer-

entiated FTD cohort, not stratified by genetic or patholo-

gical subtype, but in the small studies that have

investigated specific forms of FTD, there is some evidence

for a particular role of microglial activation in those with

progranulin (GRN) mutations12,16 and those with asso-

ciated amyotrophic lateral sclerosis (ALS).14

We therefore set out to establish whether levels of glia-

derived biomarkers vary according to the genetic FTD

subtype, and also whether levels change presymptomati-

cally in each genetic subtype, using CSF samples from the

GENFI cohort.

Methods

Participants

Participants were recruited from the international multi-

centre GENFI study including sites in the United King-

dom, Canada, Sweden, Netherlands, Belgium, Spain,

France, Portugal, Italy, and Germany. Ethical approval

was obtained for the study, and all participants provided

informed written consent. Participants underwent a stan-

dardised GENFI clinical assessment including a medical

history, physical examination, and the Mini-Mental State

Examination (MMSE).

CSF samples were collected from participants at indivi-

dual GENFI sites and then processed and stored at �80°C
at each site according to a standardised GENFI protocol.

CSF samples collected from participants at other external

GENFI sites were transferred to University College London

(UCL) at �80°C and on arrival were immediately stored at

�80°C until being thawed on the day of the experiment.

In total, samples from 183 participants were used: 62

mutation-negative controls and 121 mutation carriers. In

the mutation carrier group there were 49 C9orf72 mutation

carriers (36 presymptomatic and 13 symptomatic, all with

behavioral variant FTD (bvFTD17), except 1 with FTD-

ALS18), 49 GRN mutation carriers (37 presymptomatic and

12 symptomatic, of whom 8 had bvFTD and 4 had primary

progressive aphasia19), and 23 MAPT mutation carriers (16

presymptomatic and 7 symptomatic, all with bvFTD).
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Immunoassays were used to measure concentrations of

soluble TREM2, YKL-40 and chitotriosidase as per below,

with each assay carried out in duplicate by a single

experimenter (IW) on all samples on the same day at

UCL. Coefficients of variation were less than 10% for

each assay.

CSF soluble TREM2 levels were measured using a pre-

viously published immunoassay20 on the Meso Scale Dis-

covery (MSD) platform, with a biotinylated polyclonal

goat anti-human TREM2 capture antibody (0.25 lg/mL;

BAF1828, R&D Systems, Minneapolis, MN, USA) and

monoclonal mouse anti-human TREM2 detection anti-

body (1 lg/mL; (B-3): sc373828, Santa Cruz Biotechnol-

ogy, Texas, USA). The two chitinase proteins were

measured as follows: CSF YKL-40 levels using the com-

mercially available Human YKL-40 Immunoassay Kit on

the MSD platform and CSF chitotriosidase (CHIT1) levels

using the commercially available CircuLex Human ELISA

Kit (MBL International, Woburn, MA, USA). Coefficients

of variation were less than 10% for each assay.

Statistical analysis

Statistical analyses were performed using STATA Release

16. College Station, TX: StataCorp LLC. Sex and age were

compared between groups using chi-squared and t-tests,

respectively.

Concentrations of each of the glia-derived biomarkers

were compared between groups using a linear regression

model adjusting for age and sex, with 95% bias-corrected

bootstrapped confidence intervals with 1000 repetitions

(as data was non-normally distributed).

The association of concentrations of each of the three

biomarkers with the MMSE score was investigated in each

genetic group by assessing non-parametric partial correla-

tions (adjusting for age).

Lastly, the association of concentrations of each the

three biomarkers with age was assessed by performing a

Spearman correlation with each measure in controls as

well as looking at the mean and standard deviation con-

centration in each decade of life from the 20s to the 60s.

These values were used to create an age-adjusted z-score

for each participant in each measure. We then investi-

gated how many individual participants had an abnormal

z-score, defined as being above the 95th centile (z = 1.65)

of controls.

Results

Demographics

The presymptomatic C9orf72, GRN, and MAPT mutation

carrier groups were not significantly different in sex or

age to the control group, but each of the symptomatic

groups contained more men and were older than the con-

trols (p < 0.05 for each comparison).

Microglial activation markers in each
genetic group

No significant differences were seen between groups for

either TREM2 (Table 1; Fig. 1; Table S1A) or YKL-40

(Table 1; Fig. 2; Table S1B). However, the chitotriosidase

concentrations were higher in the symptomatic GRN

mutation carriers compared with both the controls

(adjusted mean difference 3683.5, 95% confidence inter-

vals 776.5, 6590.5, p = 0.013) and presymptomatic GRN

mutation carriers (3203.1, 95% CI 10.3, 6395.8,

p = 0.049) (Table 1; Fig. 3; Table S1C).

Five participants had undetectable levels of chitotriosi-

dase in CSF, including on repeat testing. These were two

symptomatic C9orf72 mutation carriers, one asympto-

matic MAPT mutation carrier and two controls. Approxi-

mately 6% of the population possess a homozygous 24

base pair duplication in exon 10 of the CHIT1 gene,

which leads to a complete enzymatic deficiency of chito-

triosidase (Boot et al, 1998) and undetectable levels of

chitotriosidase in CSF (Abu-Rumeileh et al, 2019). These

five individuals (2.7% cohort) were likely to be carriers of

this mutation, given their undetectable levels. A repeat

analysis excluding these cases did not affect the main

results, with a significant difference still seen between

symptomatic GRN mutation carriers and controls

(adjusted mean difference 3525.0, 95% confidence inter-

vals 553.6, 6496.3, p = 0.020).

Correlation of microglial markers with
cognition

The only significant (negative) correlation of the measures

with MMSE was seen with chitotriosidase concentration

in the presymptomatic GRN mutation carriers

(r = �0.51, p = 0.0016, Table 2; Fig. S1).

Age-adjusted z-scores

Mean (standard deviation) concentrations of each of the

markers in each of decade of life from 20 to 70 in the

controls are shown in Table S2 along with the Spearman

correlations of each measure with age: TREM2 r = 0.42,

p = 0.0008, YKL-40 r = 0.71, p < 0.0001, chitotriosidase

r = 0.21, p = 0.1013.

In the symptomatic groups, for TREM2, 31% of

C9orf72 mutation carriers, 25% of GRN mutation carriers

and 14% of MAPT mutation carriers had a concentration

above the 95th percentile of controls (Table 3). Fewer
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presymptomatic participants had a high concentration

but for the C9orf72 (14%) and MAPT (13%) mutation

groups the percentage of cases was above 5%.

Only 8% of symptomatic C9orf72 and GRN mutation

carriers and none of the symptomatic MAPT mutation

carriers had a concentration above the 95% centile for

YKL-40, with variable numbers in the presymptomatic

mutation carriers.

However, for chitotriosidase 50% of the symptomatic

GRN group, 29% of the MAPT group and 23% of the

C9orf72 group had a high concentration. As with the

other measures, there were fewer cases with high concen-

trations in the presymptomatic group with 11% of GRN,

8% of C9orf72, and 6% of MAPT mutation carriers hav-

ing a chitotriosidase level above the 95th percentile.

Discussion

This study examined levels of three glia-derived biomar-

kers, TREM2, YKL-40 and chitotriosidase, in the CSF of

people with genetic FTD due to mutations in GRN,

C9orf72, and MAPT. On a group basis only chitotriosi-

dase levels were raised, and only in the symptomatic GRN

mutation carrier group. No changes were seen in the pre-

symptomatic groups compared with controls. However in

the presymptomatic GRN mutation carrier group there

Table 1. Demographic data showing the number of participants as well as the age, sex (percentage males) and education of each group.

Control

C9orf72

presymptomatic

C9orf72

symptomatic

GRN

presymptomatic

GRN

symptomatic

MAPT

presymptomatic

MAPT

symptomatic

Number of participants 62 36 13 37 12 16 7

Sex (N and % of male in each

group)

27 (43.5) 15 (41.7) 10 (76.9) 18 (48.6) 6 (50) 5 (31.3) 5 (71.4)

Age at CSF collection, years,

mean (SD)

46.0 (13.2) 45.7 (11.2) 65.3 (8.5) 47.9 (12.5) 65.0 (6.1) 44.2 (10.4) 58.6 (6.7)

CSF TREM2, pg/mL, mean

(SD)

4015.2

(2238.7)

4323.9

(2630.1)

6633.5

(5461.5)

4260.9

(1936.4)

5203.3

(3499.9)

3869.6

(1964.0)

3944.2

(3532.7)

CSF YKL-40, ng/mL, mean

(SD)

106.1 (64.2) 112.0 (69.8) 182.5 (94.7) 104.0 (39.9) 201.4

(116.9)

112.4 (43.0) 147.2 (51.6)

CSF CHIT1, pg/mL, mean (SD) 1268.8

(1367.1)

3388.9

(13852.8)

4083.2

(7649.5)

1811.4

(2792.2)

5288.2

(4829.6)

1645.2

(2408.5)

5113.6

(5828.6)

Figure 1. Mean concentrations within each group of TREM2.

S = symptomatic, PS = presymptomatic.
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Figure 2. Mean concentrations within each group of YKL-40.

S = symptomatic, PS = presymptomatic.
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was a significant negative correlation with MMSE suggest-

ing that chitotriosidases levels increase in proximity to

symptom onset as cognition starts to become affected.

Investigating age-adjusted individual values of the bio-

markers, concentrations are very variable in each pre-

symptomatic and symptomatic genetic group, but there

are higher proportions of people than expected with

increased levels, particularly of TREM2 and chitotriosi-

dase across all three symptomatic genetic groups.

There have been few other studies of glia-derived bio-

markers in genetic FTD.12–16,21 An initial small study of

CSF chitotriosidase13 found similar levels in genetic FTD

to controls, but cohorts included a smaller number of

cases and combined genetic subtypes into one group

rather than investigating each subtype. In one further

study that investigated specific genetic groups in small

cohorts, increased chitotriosidase was seen only in GRN

mutation carriers.16 This current study adds to these prior

investigations by showing raised levels of chitotriosidase

in GRN mutation carriers as a group but also higher

levels in a subset of patients from the other genetic

groups as well.

Raised chitotriosidase levels in GRN mutation carriers

are consistent with multiple studies showing raised levels

of other inflammatory markers in CSF or blood3,22–24 and

significant microglial dysfunction and activation in GRN

mutation mouse models.25–27 GRN mutation models also

display lipid accumulating microglia with extensive lyso-

somal dysfunction,28,29 and lysosomal dysfunction is seen

in human GRN mutation carriers.30,31 This could alter

delivery of proteins to the glial cell membrane or affect

release into CSF. CSF chitotriosidase levels are highly ele-

vated in the lysosomal storage disorder Gaucher’s dis-

ease,32 where macrophages are chronically activated and

lysosomes are overwhelmed by accumulation of the

sphingolipid glucocerebroside. Raised chitotriosidase

levels in GRN mutation carriers may therefore represent

chronic lysosomal failure of microglia due to progranulin

insufficiency and lipid mishandling.

Chitotriosidase may be released from glial cells once

neurodegeneration develops, as a generalised protective

response. Excessively activated or dysfunctional, degener-

ating (senescent) microglia (due to mutation-related

mechanisms) may lead to a sustained increase in release

of these proteins. This is likely to occur presymptomati-

cally in GRN mutation carriers where abnormalities can

already be seen in MRI white matter hyperintensities,33

which are associated with astrocytic and microglial activa-

tion and dystrophy. Evidence from the significant
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Figure 3. Mean concentrations within each group of CHIT1.

S = symptomatic, PS = presymptomatic.

Table 2. Partial correlations (adjusting for age) between microglial

activation markers and cognition measured by the Mini-Mental State

Examination. r values are shown with p-values below; significant cor-

relations are shown in bold.

Genetic group Genetic status TREM2 YKL-40 CHIT1

C9orf72 Presymptomatic �0.03 �0.16 �0.11

0.8282 0.3439 0.5161

Symptomatic 0.09 �0.22 �0.16

0.7969 0.5086 0.6849

GRN Presymptomatic �0.24 �0.27 �0.51

0.1585 0.1199 0.0016

Symptomatic 0.20 �0.48 �0.25

0.6332 0.2272 0.5493

MAPT Presymptomatic �0.23 0.04 �0.28

0.4287 0.8973 0.3484

Symptomatic �0.64 �0.37 �0.79

0.2438 0.5384 0.1105

Table 3. Percentage of participants in each group where the concen-

tration of the microglial activation marker was higher than an age-

adjusted z-score of 1.65.

Genetic group Genetic status TREM2 YKL-40 CHIT1

C9orf72 Presymptomatic 14 8 8

Symptomatic 31 8 23

GRN Presymptomatic 5 0 11

Symptomatic 25 8 50

MAPT Presymptomatic 13 19 6

Symptomatic 14 0 29
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negative correlation with cognition suggests a rise in chit-

otriosidase as symptom onset approaches.

YKL-40, otherwise known as chitinase-3-like protein 1,

falls within the same chitinase class of proteins as chito-

triosidase. Its levels are raised in multiple acute and

chronic neurological disorders including AD. While a

small number of studies have shown raised levels in

undifferentiated FTD cohorts,10–15 there are fewer studies

of particular pathogenetic forms. In those that have inves-

tigated specific groups, higher concentrations of YKL-40

are found in those with associated ALS,14 and in one

prior small study from our group, in people with GRN

and MAPT mutations.16 However, in this study we did

not find raised levels in any of the three genetic forms of

FTD when studied as groups or even a substantially

increased number of cases with higher concentrations in

the age-adjusted z-score analysis. The reason for these dif-

ferences are unclear, but it is likely that the different

pathophysiological forms of FTD have differing neuroin-

flammatory responses and when an undifferentiated FTD

cohort is studied, the presence of a difference between

that group and controls will depend on the exact patholo-

gical composition of the group. Further work is needed

in this area but it suggests that at least for genetic forms

of FTD, CSF YKL-40 is not an ideal candidate for mea-

suring neuroinflammation in clinical trials.

Similarly, TREM2 levels were not raised in the group

comparisons for any of the three genotypes. However, a

subset of cases in each of the C9orf72, GRN and MAPT

mutation groups had high concentrations. As TREM2

normally promotes microglial activation, proliferation,

migration, and survival,34 raised TREM2 levels may be a

normal, protective response, supporting microglia during

early neurodegeneration, suggesting that the rise in a sub-

set of mutation carriers may be stage-dependent. Further

work is needed to look at what factors might cause raised

levels in some cases but not others, and whether there are

factors that might even impair sTREM2 release, causing a

failure of levels to rise appropriately (and therefore poten-

tially reducing microglial survival and exacerbating neuro-

nal dysfunction further).

In the C9orf72 patient group, levels of all glia-derived

biomarkers were similar to controls as a group but on

investigation of individual values a subset of patients had

high concentrations. Certainly mouse models of C9orf72

expansions demonstrate florid glial activation.35,36 How-

ever, a recent study found that immune dysfunction and

microglial activation in a C9orf72 model vary widely

according to the mouse gut microbiome.37 Variants in

TMEM106B also modify effects of the C9orf72 expansion by

impacting lysosomal function.38 These mechanisms may

underlie the wide variability in glia-derived biomarker

levels in the C9orf72 group. Examination of the impact of

environmental and genetic modifiers on neuroinflamma-

tory biomarkers in a larger C9orf72 cohort would be useful

to explore this. Intriguingly, CSF chitotriosidase levels in

those with C9orf72 expansions and an ALS phenotype have

been previously shown to be higher than those with an FTD

phenotype39 and future studies examining the interaction

of these features will be important.

Similarly to the C9orf72 group, the symptomatic MAPT

mutation carriers showed no differences as a group to

controls for any of the three glia-derived markers. How-

ever, for chitotriosidase 29% of symptomatic mutation

carriers, and for TREM2 14% of symptomatic mutation

carriers, had concentrations above the 95th centile cutoff

for controls. Certainly some previous non-clinical studies

have suggested a role for inflammation in MAPT-

associated FTD,40,41 so it will be important to investigate

other inflammatory biomarkers and whether the change

in MAPT mutations is stage-specific.

The positive association of TREM2 and YKL-40 levels

with age is consistent with previous studies in sporadic

FTD and AD.10,42,43 Microglial activity increases with

aging, which may augment release of TREM2 by micro-

glia as a protective response to neuronal loss in aging

individuals,34 and this may also be the case for YKL-40.

Chitotriosidase levels were not associated with age in any

group, consistent with other studies of AD and FTD.13,14

This suggests that the high CSF chitotriosidase levels in

patients with GRN mutations represents excessive micro-

glial activation or dysfunction related to the underlying

mutation itself, or neurodegeneration, rather than aging.

It also emphasises the importance of adjusting analyses of

fluid biomarker levels for age when comparing groups of

individuals with large age ranges, particularly when age

independently affects the biological function of interest.

Limitations of the study include the small size of the

patient subgroups once stratified which may have limited

power to detect significant differences between groups.

However, this is inherent to a rare disease like genetic

FTD. Measurement of chitotriosidase is in part limited by

the occurrence of people with undetectable levels (five

participants in this cohort), likely due to mutations in

CHIT1 and future studies should take this into account.

Longitudinal measurements of glia-derived biomarkers in

CSF will be helpful to investigate in the future, including

in individuals who convert during the study, allowing

analysis of the hypothesis that chitotriosidase levels

change in proximity to symptom onset.

In summary, whilst CSF chitotriosidase was the most

promising biomarker in this study as a potential in vivo

measure of neuroinflammation in genetic FTD, particu-

larly in those with GRN mutations, there is much varia-

bility within each genetic group. More work is needed to

understand the reasons for that variability e.g. whether it
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is related to the specific stage of the disease, or whether

there are inherent pathophysiological differences in the

extent of the neuroinflammatory response in some muta-

tion carriers in comparison to others. This variability may

spell problems for their use in clinical trials. Although

some mutation carriers have high concentrations, others

have levels that overlap with controls i.e. there is little

dynamic range for ‘lowering’ of a neuroinflammatory

measure in a therapeutic trial when the concentration is

already in the control range. Many of the proposed drugs

for genetic FTD target neuroinflammation either directly

or indirectly but the findings in this study suggest that we

have not yet found the ideal measure of this important

pathophysiological process for such trials.
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Table S1 Adjusted mean differences, 95% bootstrapped

confidence intervals, and p-values from the linear regres-

sion models (adjusted for age and sex): (A) TREM2, (B)

YKL-40, (C) CHIT1. PS is presymptomatic, S is sympto-

matic.

Table S2. Mean (standard deviation) concentrations of

the microglial activation markers in each decade of life

within the controls (excluding the two undetectable con-

centrations of CHIT1 in controls). Spearman correlation

of each measure with age was as follows: TREM2

r = 0.42, p = 0.0008, YKL-40 r = 0.71, p < 0.0001, CHIT1

r = 0.21, p = 0.1013.

Figure S1. Partial correlations (adjusting for age) of

CHIT1 with Mini-Mental State Examination in GRN

mutation carriers (A) presymptomatic and (B) sympto-

matic.
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