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Abstract.
Background: Magnetic resonance imaging (MRI) measures may be used as outcome markers in frontotemporal dementia
(FTD).
Objectives: To predict MRI cortical thickness (CT) at follow-up at the single subject level, using brain MRI acquired at
baseline in preclinical FTD.
Methods: 84 presymptomatic subjects carrying Granulin mutations underwent MRI scans at baseline and at follow-up
(31.2 ± 16.5 months). Multivariate nonlinear mixed-effects model was used for estimating individualized CT at follow-up
based on baseline MRI data. The automated user-friendly preGRN-MRI script was coded.
Results: Prediction accuracy was high for each considered brain region (i.e., prefrontal region, real CT at follow-up versus
predicted CT at follow-up, mean error ≤1.87%). The sample size required to detect a reduction in decline in a 1-year clinical
trial was equal to 52 subjects (power = 0.80, alpha = 0.05).
Conclusion: The preGRN-MRI tool, using baseline MRI measures, was able to predict the expected MRI atrophy at follow-
up in presymptomatic subjects carrying GRN mutations with good performances. This tool could be useful in clinical trials,
where deviation of CT from the predicted model may be considered an effect of the intervention itself.

Keywords: Frontotemporal dementia, granulin, magnetic resonance imaging, mutation, preclinical, presymptomatic
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INTRODUCTION

Frontotemporal dementia (FTD) refers to a hetero-
geneous group of disorders predominantly affecting
the frontal and temporal lobes and characterized
by behavioral disturbances, impairment of executive
functions, or language deficits [1, 2]. About 40%
of FTD patients have a family history of demen-
tia, and about 20% have a clear autosomal dominant
inheritance [3]. Among monogenic FTD, mutations
in Granulin gene (GRN) are one of the most fre-
quent genetic determinants [4–6] where symptoms
are preceded by a long period of gradual accrual
of subtle impairment of cognitive functions, pro-
gressive brain imaging abnormalities, and biomarker
changes. However, despite the timely characteriza-
tion of early and proximity markers of disease onset
[7, 8], outcome measures to test the efficacy of treat-
ment interventions are not yet validated. Indeed, in
GRN mutation carriers, a number of potential ther-
apeutic drugs have been designed [9, 10], and it is
likely that these drugs may be more effective if admin-
istered early in disease course. However, because of
the tautologic impossibility to define a clinical out-
come for preclinical FTD, our strategic approach is
directed towards fluidic or imaging biomarkers as
outcome measures.

Circulating progranulin levels have been demon-
strated useful to detect the presence of GRN haplo-
insufficiency [11], while serum or cerebrospinal fluid
neurofilaments light chain or glial fibrillary acidic
protein concentrations may be used to predict early
symptoms development [12, 13], but their utility as
outcome markers needs to be further established. In
preclinical GRN mutations carriers, cross-sectional
studies have identified significant grey matter atrophy
and white matter hyperintensities in mutation carri-
ers up to 10 years before expected symptom onset
[7, 14, 15], while longitudinal studies have carefully
shown imaging trajectories over time [15–17]. How-
ever, none of these markers can be currently used
as outcome measures with sufficient accuracy at the
single subject level.

Magnetic resonance imaging (MRI) markers are
good candidates for the assessment of intervention
efficacy, as they may aid to track the delay of dis-
ease progression, selectively evaluating effects on
specific brain regions. An ideal marker should be
able to accurately predict the expected MRI features
at follow up, should be reliable and reproducible,
and should be consistent across different centers. In
other words, a useful outcome MRI marker should be

able to forecast a subject’s follow-up findings from
baseline data. Accordingly, a pharmacological or
non-pharmacological intervention may be considered
effective when associated with a significant differ-
ence from the predicted model, indicating a reduction
of expected disease progression. This approach could
be used in early experimental medicine studies with-
out placebo/sham treatment, which is particularly
useful in view of the neurosurgical intervention
required for some proposed GRN treatments and the
challenges to global recruitment for large placebo-
controlled studies.

In the present work, we used a multivariate non-
linear mixed effects model to predict brain MRI
data at follow-up in presymptomatic subjects carry-
ing pathogenetic GRN mutations from the Genetic
FTD Initiative (GENFI) cohort. Such multivariate
nonlinear mixed effects models have been used to
estimate individualized longitudinal trajectories of
neuroimaging data, but few studies examined neu-
rodegenerative disorders [18]. We computed and
coded an automated user-friendly script in which the
simple and straightforward entry of raw baseline MRI
T1-weighted data resulted in an accurate prediction
of follow-up MRI data at a given time point and at
the single subject level.

METHODS

Participants

Data for this study were drawn from the GENFI
multicenter cohort study (data freeze 5), which con-
sists of 22 research centers across Europe and Canada
(http://www.genfi.org.uk). We included subjects car-
rying null mutations in the GRN gene at their
presymptomatic stage, and for whom both baseline
and follow-up MRI was available.

A standardized clinical assessment was performed
for each subject, including the Digit Symbol Task,
parts A and B of the Trail Making Test, the Wech-
sler Abbreviated Scale of Intelligence Block Design
task, the short version of the Boston Naming Test and
Letter and Category fluences [7].

Local ethics committees approved the study at each
site and all participants provided written informed
consent; the study was conducted according to the
Declaration of Helsinki.

Study design

This study was aimed at predicting follow-up brain
MRI data at a given time point and at single subject

http://www.genfi.org.uk
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Fig. 1. Study design. The cartoon depicts the rationale of the present study. Predicting follow-up MRI data by baseline MRI data input at
single subject level may represent a helpful outcome marker of treatment response (first row). To this, we applied multivariate nonlinear
mixed effects model and ten-fold cross-validation to predict follow-up MRI at single subject level at a given time point (second row). When
treatment intervention is administered, efficacy may be proven by any deviation from the expected MRI scan (third row).

level with the baseline MRI data serving as inputs to
the model. We propose that if a treatment intervention
is carried out, any deviation from the predicted model
may be considered an effect of the intervention itself
(see Fig. 1).

There were five steps to the study: 1) we extracted
cortical thickness maps with a widely used automated
brain atlas from baseline and follow-up MRI scans
(see below, MRI acquisition and pre-processing sec-
tion); 2) we run a multivariate nonlinear mixed effects
model and an expectation-maximization algorithm
for estimating individualized longitudinal trajectories
of neuroimaging data (see below, Statistical approach
section); 3) we then run a montecarlo simulation
(5000 runs) leaving ten random subject out to assess
results reliability in predicting follow-up MRI corti-
cal regions from baseline MRI cortical thickness at a
single subject level, and we assessed the mean percent
error for each considered brain region; 4) we coded
a user friendly toolbox, the preGRN-MRI, to predict
MRI at follow-up; 5) we considered baseline MRI
data of another cohort of presymptomatic GRN muta-
tions carriers from the GENFI study, not included in
the previous analysis, and we assessed the mean per-
cent error in this second dataset to further prove the
reliability of the method.

The preGRN-MRI toolbox, the user guide, and the
related example dataset are available upon reasonable
request.

MRI acquisition and pre-processing

Participants were scanned at their local site on
3 Tesla scanners from two different manufactur-
ers, either Philips Healthcare or Siemens Healthcare
Diagnostics. The acquisition protocol, designed to
match across scanners as much as possible, included
a volumetric T1-weighted MRI scan, as previously
published [7]. Baseline and follow-up scans were
processed using the standardized longitudinal corti-
cal thickness pipeline of the Computational Anatomy
Toolbox (CAT v12.6, http://www.neuro.uni-jena.
de/cat/), extension to SPM12 V.7219 running on
MATLAB R2017a). The quality assurance frame-
work implemented in CAT was applied on a scale
from A to F (A excellent to F unacceptable/failed),
and we only retained scans with an overall quality
ranging from A (excellent) to C (satisfactory).

Baseline and follow-up cortical thickness maps
were parceled into 68 cortical regions, according to
the Desikan-Killiany atlas [19]. Mean cortical thick-
ness of each region was estimated in the native space.
Then, mean values were mediated according to their
belonging to brain macro-areas: lateral frontal cor-
tex (caudal middle frontal, pars opercularis, pars
orbitalis, pars triangularis, rostral middle frontal),
orbitofrontal cortex (lateral orbitofrontal, medial
orbitofrontal, frontal pole), superior frontal cortex
(superior frontal), insula (insula), lateral temporal

http://www.neuro.uni-jena.de/cat/
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cortex (inferior temporal, middle temporal, supe-
rior temporal), medial temporal cortex (entorhinal,
fusiform, parahippocampal, temporal pole), lateral
parietal cortex (inferior parietal, superior parietal)
and precuneus (precuneus).

Statistical approach

In this work, we used a multivariate nonlinear
mixed effects model developed by Bilgel et al. [18]
for estimating the trajectories of biomarkers from
longitudinal data in different brain areas. As a hierar-
chical model, each subject was fitted on its regression,
with fitting parameters applied a second-order fitting.
At this point, whole-group parameters were used to
extrapolate a general trend, considering subjects’ age
and time spans.

The progression of MRI cortical thickness for each
subject Sij was assumed to be as follows:

Sij = αitij + βi

where αi is the rate of MRI cortical thickness pro-
gression, tij is the age of the subject i at time j, and
βi is the baseline MRI cortical thickness. Then the K

biomarker measurements form a vector yij for subject
i at time j is modeled by:

yij = a Sij + b + εij

where a and b are vector and εij∼N(0, R) is the
observation noise assumed to be independent and
identically distributed across subjects.

This is a mixed effects model that incorporates the
fixed effects a and b, the individual random effects αi

and βi. The model is nonlinear in the parameters.
To solve for the parameters, we applied an expec-

tation-maximization (EM) algorithm [20], an itera-
tive method that estimates parameters in statistical
models, depending on unobserved latent variables.
The algorithm alternates between an expectation (E)
step, evaluating the expectation of the log-likelihood
using the current estimate for the parameters, and a
maximization (M) step, which computes the param-
eters maximizing the function found in the E step.

To assess how the results of the statistical analy-
sis may be generalizable to an independent data set,
and to estimate how accurately the predictive model
performs, we used a ten-fold cross-validation. The
cross-validation method works by partitioning the
data into two subsets: a training set and a testing set.
The first set is used to calculate the models, while the
second set is used to test the model with a set of data
not used to calculate the parameters of the models.

To minimize the variability, multiple rounds of cross
validation were performed using different sets ran-
domly selected by the original dataset. The validation
results were averaged to estimate the performance. In
our case, we used a ten-fold cross-validation where
in each run we randomly select 10 subjects as testing
set and the other subjects were used to estimate the
parameters of the models.

The mean error between the predicted cortical
thickness of each region and then expected (real) cor-
tical thickness of each region [100∗(predicted value
– expected value)/predicted value] was calculated.

Finally, we performed a power analysis using
G∗Power [21], to investigate the minimum number of
subjects necessary have a good reliability and power
as defined by Cohen [22]. To this, we used the non-
centrality parameter L calculated as:

L = f 2(n − k − 1)

where n is the number of subjects, k the number of
regressor and f 2 defined as:

f 2 = R2

1 − R2

that is the ratio of the proportion of variance
accounted for relative to the proportion of variance
unaccounted for.

Data availability statement

The data used to support the findings of this
study were derived from the Genetic Frontotempo-
ral Dementia Initiative (GENFI, http://genfi.org.uk/).
They are available on request from the Principal
Investigator of the GENFI consortium (Dr Jonathan
Rohrer, University College London, E-mail: genfi@
ucl.ac.uk.).

RESULTS

Participants

We firstly considered 84 presymptomatic sub-
jects carrying GRN mutations. The mean age was
47.8 (standard deviation, SD = 11.4), 60.7% were
female (n = 51), with 15.04 (SD = 3.4) years of formal
schooling. Neuropsychological assessment (mean
score ± standard deviation) is reported in Supple-
mentary Table 1. The mean interval between MRI
scans was 31.2 months from the baseline MRI scan
(SD = 16.5, range = 9.6–71.3 months). MRI quality
ranking was excellent/good for both baseline and

http://genfi.org.uk/
mailto:genfi@{penalty -@M }ucl.ac.uk
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Table 1
Cortical thickness of each brain region in presymptomatic GRN mutation carriers

Brain ROIs First cohort (n = 84) Second cohort (n = 6)

baseline follow-up p mean baseline follow-up p mean
MRI MRI error %∗ MRI MRI error %∗

lateral frontal L 2.76 ± 0.13 2.76 ± 0.12 0.71 1.84 ± 0.36 2.88 ± 0.09 2.85 ± 0.11 0.52 1.19 ± 0.35
lateral frontal R 2.76 ± 0.12 2.76 ± 0.17 0.36 1.87 ± 0.49 2.85 ± 0.12 2.84 ± 0.10 0.87 0.53 ± 0.13
orbitofrontal L 2.65 ± 0.17 2.67 ± 0.16 0.84 4.07 ± 0.94 2.82 ± 0.18 2.77 ± 0.16 0.63 1.84 ± 0.26
orbitofrontal R 2.64 ± 0.17 2.67 ± 0.20 0.06 3.69 ± 0.88 2.86 ± 0.124 2.86 ± 0.17 1.00 1.95 ± 0.37
superior frontal L 2.88 ± 0.14 2.83 ± 0.18 <0.001 2.59 ± 0.53 3.04 ± 0.09 3.03 ± 0.11 0.87 1.37 ± 0.27
superior frontal R 2.87 ± 0.14 2.82 ± 0.17 <0.001 2.84 ± 0.59 3.04 ± 0.11 3.02 ± 0.11 0.63 0.96 ± 0.19
medial temporal L 3.16 ± 0.26 3.20 ± 0.25 0.10 5.92 ± 1.18 3.51 ± 0.23 3.61 ± 0.20 0.42 4.61 ± 0.87
medial temporal R 3.18 ± 0.29 3.22 ± 0.3 0.08 6.89 ± 1.37 3.61 ± 0.08 3.54 ± 0.08 0.20 2.11 ± 0.49
lateral temporal L 2.90 ± 0.16 2.93 ± 0.14 0.014 2.68 ± 0.49 2.98 ± 0.10 2.94 ± 0.11 0.42 1.29 ± 0.33
lateral temporal R 2.93 ± 0.15 2.97 ± 0.20 0.008 2.54 ± 0.62 2.99 ± 0.14 2.98 ± 0.15 0.75 0.87 ± 0.14
lateral parietal L 2.46 ± 0.12 2.46 ± 0.10 0.86 2.23 ± 0.51 2.53 ± 0.07 2.53 ± 0.10 0.75 1.11 ± 0.15
lateral parietal R 2.45 ± 0.14 2.47 ± 0.16 0.16 2.66 ± 0.61 2.52 ± 0.07 2.50 ± 0.10 0.87 1.21 ± 0.19
precuneus 2.48 ± 0.13 2.45 ± 0.14 0.02 2.41 ± 0.56 2.60 ± 0.09 2.61 ± 0.08 0.87 1.51 ± 0.27
insula L 3.49 ± 0.22 3.51 ± 0.20 0.14 4.44 ± 0.82 3.69 ± 0.11 3.63 ± 0.16 0.42 2.40 ± 0.69
insula R 3.47 ± 0.22 3.5 ± 0.26 0.04 4.75 ± 1.06 3.70 ± 0.25 3.76 ± 0.18 0.42 2.84 ± 0.61

L, left; R, right; ROIs, region of Interest expressed in millimeters; significant p-values in bold face, baseline MRI scores versus follow-up
MRI cortical thickness scores (p < 0.004 corrected for multiple comparisons). Results are expressed as mean ± standard deviation. ∗mean
error between real cortical thickness at follow-up and predicted cortical thickness at follow-up.

follow-up scans (baseline: 82% B, 18% B-; follow-
up: 80% B, 20% B-).

Baseline and follow-up cortical thickness values
are reported in Table 1 (first cohort). We found sig-
nificant differences between baseline and follow-up
in the superior frontal region, bilaterally. These areas
presented more severe cortical thinning at follow-up
compared to baseline (one-way mixed ANOVA, with
baseline versus follow-up MRI as within-subjects
factors). No other significant differences between
baseline and follow-up cortical regions were found.

Model fitting

The prediction analysis takes baseline cortical
regions as input, considering age and time between
the two MRI scans as regressors, and the model was
then fitted. As reported in Fig. 2 and Table 1 (first
cohort), overall prediction accuracy was high for
each considered brain region, with low mean error.
The best prediction was obtained considering lateral
prefrontal regions, bilaterally (real cortical thickness
at follow-up versus predicted cortical thickness at
follow-up, mean error ≤1.87%), while the worst
was for medial temporal region, bilaterally (mean
error = 5.82% and 6.89%). Thus, for each subject,
we obtained overall high accuracy in predicting brain
imaging outcome.

We then coded a user-friendly automated preGRN-
MRI toolbox to predict cortical thickness of each
region at follow-up at the single subject level.

Fig. 2. Mean percent error of multivariate nonlinear mixed effects
model in predicting follow-up cortical regions by baseline MRI
data in first cohort of presymptomatic Granulin (GRN) muta-
tion carriers. L, left; R, right. The results are expressed as mean
error ± standard deviation.

No significant further preprocessing is needed; the
user has only to insert the age of the subject at
baseline MRI, the values of each considered base-
line cortical region, previously computed with the
Desikan-Killiany atlas 19, and the age of the subject
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Fig. 3. Percent error of multivariate nonlinear mixed effects model in predicting follow-up cortical regions by baseline MRI data in a new
sample of 6 presymptomatic Granulin (GRN) mutation carriers. L, left; R, right. High percentage error values for several subjects (subject
6 for left insula, subject 4 for right insula, subject 1 for left medial temporal region) were reported to maintain consistency in the graphical
representation.

at the desired MRI follow-up. The toolbox will assess
automatically the predicted brain regions’ values at
follow-up in the referral presymptomatic subject car-
rying a GRN mutation.

Model validation

We further evaluated the effectiveness of our tool-
box, using a new dataset of 6 presymptomatic subjects
carrying GRN mutations from the GENFI cohort,
not included in the previous analyses. The mean age
was 47.3 (standard deviation, SD = 11.4), 33% were
female (n = 2), with 11.4 (SD = 4.3) years of for-
mal schooling. The mean follow-up MRI was 18.2
months (SD = 6.4, range = 12–25 months). MRI qual-
ity ranking was excellent/good for both baseline and
follow-up scans (baseline: 84% B, 16% B-; follow-
up: 85% B, 15% B-). This second (validation) cohort
presented a different pattern of cortical thickness,
as demonstrated by the between-cohort comparisons
(1st versus 2nd cohort at baseline and at follow-
up), with statistically significant differences between
the two cohort at baseline as well as at follow-up
(frontal, temporal, parietal and insula regions, bilat-
erally) (Supplementary Table 2).

We re-run the analyses using the previously coded
preGRN-MRI toolbox. The mean percent error was

comparable, as reported in Fig. 3 and Table 1 (second
cohort).

Sample size estimates

The sample size required to detect a reduction
in decline of overall cortical thickness in a 1-year
clinical trial was equal to 52 subjects (power = 0.80,
alpha = 0.05).

DISCUSSION

Our study demonstrated that a novel user-friendly
toolbox, preGRN-MRI, can accurately predict corti-
cal thickness changes at follow-up MRI, at the single
subject level over a timescale compatible for clini-
cal trials. Thus, preGRN-MRI toolbox might be pro-
posed as a useful device to track neuroimaging
changes in early phase clinical trials, as any deviation
of cortical thickness from the predicted model could
be considered an effect of the intervention itself.
It avoids complicated processing by the end users,
by providing them with an easy-to-use, automated
pipelined toolbox. It also produces comprehensive
and interpretable results for model evaluation toward
better understanding FTD, and better design of trials.
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We considered MRI T1-weighted structural imag-
ing and a widely used atlas [19] to easily compute
the data analysis, and to use preGRN-MRI toolbox in
any centre with comparable findings, independently
of MRI scan or acquisition process [23, 24]. Indeed,
in both the first and in the second cohorts the best pre-
diction was obtained by considering the lateral frontal
cortex (mean error <1.88% and <1.20%, respectively)
but other regions scored adequately, suggesting the
possibility to compute a compound score to increase
predictive performances.

These results show that the nonlinear mixed effect
model has good reliability and good generalizability.
The proposed framework simplifies the estimation
of parameters, and accurately estimates the trajec-
tory parameters taking into account inter-individual
differences: as hierarchical model, the first level
regression of the subjects and the subsequent sec-
ond level analysis provided a regression over time
independent from the single subjects. From this point
of view, this can be considered as an experimental
“single subject” measure along all times. The high
reproducibility was further demonstrated by a second
dataset from the GENFI cohort (even including sub-
jects with different cortical thickness pattern), with
comparable findings.

Future clinical trials in presymptomatic subjects
carrying GRN mutations may benefit from preGRN-
MRI toolbox to capture variations in response to a
treatment intervention. Up to now, no reliable out-
come marker in the preclinical stages of FTD is yet
available. The present model fitting may be expanded
to other monogenic forms of FTD in their preclin-
ical or symptomatic stages. Indeed, we may argue
that the model parameters may differ in C9orf72
or MAPT mutations, as these are characterized by
different disease trajectories and the involvement of
selective brain areas [7], in both presymptomatic and
symptomatic disease stages.

A number of ongoing pharmacological trials aim
to postpone or revert disease onset in monogenic
FTD. GRN mutations impair transcription of the
gene, leading to levels of progranulin in the serum
and cerebrospinal fluid that are >50% lower than
normal from birth [4, 5]. Therefore, therapeutic
approaches may range from either increasing tran-
scription from the normal allele or modulating
post-translational mechanisms [25]. Clinical trials
have already tested amiodarone, with the purpose
to increase progranulin levels in GRN mutations
carriers, with no clear-cut efficacy [26] and phar-
macological trials targeting the sortilin (SORT1), a

lysosomal trafficking receptor for progranulin and
mediating progranulin endocytosis [27], are ongoing
with promising results [28]. Other potential thera-
peutic strategies are in the pipeline, including the
delivery of a healthy GRN gene via an AAV9 vec-
tor [29]. Recently, non-pharmacological approaches
by using non-invasive brain stimulation technolo-
gies have been demonstrated safe and effective in
restoring clinical symptoms and brain connectivity
in FTD patients [30–32]. Within this context, and
prospectively thinking to future intervention strate-
gies, a reliable surrogate marker of disease, such as
regional cortical thinning, may be of crucial to assess
treatment efficacy in clinical trials. We do not argue
against the ultimate necessity for randomized placebo
controlled trials, but in view of the low prevalence
of known GRN mutation carriers worldwide, and
the invasiveness of non-pharmacological approaches
in development, early proof of concept studies may
benefit from open label studies without placebo, rely-
ing on accurate predictive biomarkers to indicate
efficacy.

PreGRN-MRI toolbox presents several advan-
tages for this approach. It is automated, together
with parameter optimization through nested cross-
validation and it is flexible, allowing users to consider
different brain regions individually or to compute a
comprehensive measure of brain changes.

We acknowledge that this study entails some
limitations. First, the prediction model may be
improved considering modulators of disease pro-
gression, such as cognitive reserve proxy measures
[16, 33] or computing cerebral regions in a differ-
ent way. However, the model used here, implemented
by an expectation-maximization algorithm, takes into
account unobserved latent variables, i.e., variables
that do not change over time, such as TMEM106b
genotype [33]. Moreover, testing preGRN-MRI tool-
box in future clinical trials may prove its reliability
in assessing intervention efficacy. Finally, the same
approach might be tested in the other pathogenetic
mutations, such as MAPT or C9orf72, to develop
a user-friendly toolbox tailored on each monogenic
FTD-related disorder.

In conclusion, preGRN-MRI tool, using baseline
MRI measures, was able to predict the expected MRI
at follow-up in presymptomatic subjects carrying
GRN mutations with good performances. In future
studies, preGRN-MRI tool might be useful in clini-
cal trials, where deviation of CT from the predicted
model may be considered an effect of the intervention
itself.
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of Tübingen, Tübingen, Germany;

• Luisa Benussi – Istituto di Ricovero e Cura
a Carattere Scientifico Istituto Centro San
Giovanni di Dio Fatebenefratelli, Brescia,
Italy;

• Valentina Bessi – Department of Neuroscience,
Psychology, Drug Research, and Child Health,
University of Florence, Florence, Italy;

• Giuliano Binetti – Istituto di Ricovero e Cura
a Carattere Scientifico Istituto Centro San Gio-
vanni di Dio Fatebenefratelli, Brescia, Italy;

• Sandra Black – Sunnybrook Health Sciences
Centre, Sunnybrook Research Institute, Univer-
sity of Toronto, Toronto, Canada;

• Sergi Borrego-Ecija – Alzheimer’s disease and
Other Cognitive Disorders Unit, Neurology Ser-
vice, Hospital Clı́nic, Barcelona, Spain;

• Jose Bras – Dementia Research Institute,
Department of Neurodegenerative Disease,
UCL Institute of Neurology, Queen Square,
London, UK;

• Rose Bruffaerts – Laboratory for Cognitive
Neurology, Department of Neurosciences, KU
Leuven, Leuven, Belgium;

• Paola Caroppo – Fondazione IRCCS Istituto
Neurologico Carlo Besta, Milano, Italy;

• David Cash – Dementia Research Centre,
Department of Neurodegenerative Disease,
UCL Institute of Neurology, Queen Square,
London, UK;

• Miguel Castelo-Branco – Faculty of Medicine,
University of Coimbra, Coimbra, Portugal;

• Rhian Convery – Dementia Research Cen-
tre, Department of Neurodegenerative Disease,
UCL Institute of Neurology, Queen Square,
London, UK;

• Thomas Cope – Department of Clinical Neuro-
science, University of Cambridge, Cambridge,
UK;

• Marı́a de Arriba – Neuroscience Area,
Biodonostia Health Research Insitute, San
Sebastian, Gipuzkoa, Spain;

• Giuseppe Di Fede – Fondazione IRCCS Istituto
Neurologico Carlo Besta, Milano, Italy;

https://www.j-alz.com/manuscript-disclosures/21-5447r1
https://www.j-alz.com/manuscript-disclosures/21-5447r1
https://dx.doi.org/10.3233/JAD-215447
https://dx.doi.org/10.3233/JAD-215447


214 E. Premi et al. / An Automated Toolbox to Predict Single Subject Atrophy in Presymptomatic Granulin Mutation Carriers

• Zigor Dı́az – CITA Alzheimer, San Sebastian,
Gipuzkoa, Spain;

• Diana Duro – Faculty of Medicine, University
of Coimbra, Coimbra, Portugal;

• Chiara Fenoglio – Fondazione IRCCS Ca’
Granda Ospedale Maggiore Policlinico, Neu-
rodegenerative Diseases Unit, Milan, Italy;
University of Milan, Centro Dino Ferrari, Milan,
Italy;

• Camilla Ferrari – Department of Neuroscience,
Psychology, Drug Research, and Child Health,
University of Florence, Florence, Italy;

• Catarina B. Ferreira – Laboratory of Neu-
rosciences, Institute of Molecular Medicine,
Faculty of Medicine, University of Lisbon, Lis-
bon, Portugal;

• Nick Fox – Dementia Research Centre, Depart-
ment of Neurodegenerative Disease, UCL
Institute of Neurology, Queen Square, London,
UK;

• Morris Freedman – Baycrest Health Sci-
ences, Rotman Research Institute, University of
Toronto, Toronto, Canada;

• Giorgio Fumagalli – Fondazione IRCCS Ca’
Granda Ospedale Maggiore Policlinico, Neu-
rodegenerative Diseases Unit, Milan, Italy;
University of Milan, Centro Dino Ferrari,
Milan, Italy; Department of Neurosciences,
Psychology, Drug Research and Child Health
(NEUROFARBA), University of Florence, Flo-
rence, Italy;

• Alazne Gabilondo – Neuroscience Area,
Biodonostia Health Research Insitute, San
Sebastian, Gipuzkoa, Spain;

• Serge Gauthier – Alzheimer Disease Research
Unit, McGill Centre for Studies in Aging,
Department of Neurology & Neurosurgery,
McGill University, Montreal, Québec,
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