SHORT REPORT

Abnormal pain perception is associated with thalamo-cortico-striatal atrophy in C9orf72 expansion carriers in the GENFI cohort

Rhian S Convery,1 Martina Bocchetta,1 Caroline V Greaves,1,1 Katrina M Moore,1 David M Cash,1,2 John Van Swieten,3 Fermin Moreno,4 Raquel Sánchez-Valle,5 Barbara Borroni,6 Robert Laforence Jr,7 Mario Masellis,8 Maria Carmela Tartaglia,9 Caroline Graf,10 Daniela Galimberti,11,12 James B Rowe,13 Elizabeth Finger,14 Matthis Synofzik,15,16 Rik Vandenberghe,17,18 Alexandre de Mendonca,19 Fabrizio Tagliavini,20 Isabel Sánchez-Veale,21,22 Simon Ducharme,23,24 Christopher Butler,25 Alex Gerhard,26,27 Johannes Levin,28,29 Adrian Danek,29 Markus Otto,30 Jason D Warren,1 Jonathan D Rohrer1,1 on behalf of the Genetic FTD Initiative (GENFI)

ABSTRACT

Objective Frontotemporal dementia (FTD) is typically associated with changes in behaviour, language and movement. However, recent studies have shown that patients can also develop an abnormal response to pain, either heightened or diminished. We aimed to investigate this symptom in mutation carriers within the Genetic FTD Initiative (GENFI).

Methods Abnormal responsiveness to pain was measured in 462 GENFI participants: 281 mutation carriers and 181 mutation-negative controls. Changes in responsiveness to pain were scored as absent (0), questionable or very mild (0.5), mild (1), moderate (2) or severe (3). Mutation carriers were classified into C9orf72 (104), GRN (128) and MAPT (49) groups, and into presymptomatic and symptomatic stages. An ordinal logistic regression model was used to compare groups, adjusting for age and sex. Voxel-morphometry was performed to identify neuroanatomical correlates of abnormal pain perception.

Results Altered responsiveness to pain was present to a significantly greater extent in symptomatic C9orf72 expansion carriers than in controls: mean score 0.40 (SD 0.71) vs 0.00 (0.04), reported in 29% vs 1%. No significant differences were seen between the other symptomatic groups and controls, or any of the presymptomatic mutation carriers and controls. Neural correlates of altered pain perception in C9orf72 expansion carriers were the bilateral thalamus and striatum as well as a predominantly right-sided network of regions involving the orbitofrontal cortex, inferomedial temporal lobe and cerebellum.

Conclusion Changes in pain perception are a feature of C9orf72 expansion carriers, likely representing a disruption in somatosensory, homeostatic and semantic processing underpinned by atrophy in a thalamo-cortico-striatal network.

INTRODUCTION

Frontotemporal dementia (FTD) is a complex neurodegenerative disease that encompasses a spectrum of symptoms. Whilst a combination of behavioural abnormalities, language dysfunction, cognitive deficits and motor impairments form the classical phenotype of FTD, a number of other symptoms have been reported that are often overlooked, including altered perception of pain.1–5

Descriptions of reduced response to pain in FTD have been intermittently reported over many years, although with variable frequency, for example, only 3% in one report,4 but up to 45% in papers from another research group.1,2 An exaggerated reaction to pain has also been reported, with one series finding its presence in up to 55% of people with FTD, particularly in those with the temporal variant.3 A more recent study described altered responsiveness to pain in 8/15 (67%) people with behavioural variant FTD (bvFTD), 8/11 (72%) with semantic dementia (SD) and 2/5 (40%) with progressive non-fluent aphasia (PNFA), with decreased responsiveness more typical in bvFTD, and increased responsiveness in the language variants, SD and PNFA.3 For the first time, this study found a particular association with mutations in the C9orf72 gene, although only six patients were studied.3 We therefore set out to explore the presence of this symptom in a larger cohort of patients with genetic FTD, through the Genetic FTD Initiative (GENFI), investigating the frequency of altered responsiveness to pain in both the symptomatic and presymptomatic period, and its neural correlates.

METHODS

Participants were recruited from the third data freeze of the GENFI study,6 which incorporated 533 participants from 22 centres. Of these participants, 462 had data on abnormal pain perception from the GENFI core clinical assessment: 281 mutation carriers and 181 mutation-negative controls. Of note, the
symptomatic C9orf72, GRN and MAPT groups did not differ in severity as measured by the FTLD-CDR sum of boxes score. Altered responsiveness to pain (either diminished or heightened response) was assessed via a clinical questionnaire, performed as a semi-structured interview with the patient and an informant, modelled on the Clinical Dementia Rating (CDR) scale with severity scored from 0 to 3: 0 = absent, 0.5 = questionable or very mild change in responsiveness to pain, 1 = mild change with no limitation on daily activities, 2 = moderate change with some limitation on daily activities (<50%), 3 = severe with limitation on most daily activities. Participant demographics are reported in table 1.

Statistical analysis

Abnormal pain perception scores were compared between the groups using an ordinal logistic regression model, adjusting for age and sex.

Imaging analysis

Participants underwent volumetric T1 MR imaging on a 3T scanner in accordance with the GENFI imaging protocol. Voxel-based morphometry was performed using Statistical Parametric Mapping V.12 software (https://www.fil.ion.ucl.ac.uk/spm/) in MATLAB. The T1-weighted images were first normalised and segmented into grey matter (GM), white matter and cerebrospinal fluid probability maps using DARTEL. GM segments were transformed in MNI space, modulated and smoothed using a Gaussian kernel with 6 mm full-width at half maximum before analysis. Finally, a GM mask was applied. Total intracranial volume (TIV) was calculated by summing the three tissue class volumes. Preprocessed GM tissue maps were fitted to a multiple regression model to identify correlations between GM density and abnormal pain perception. Age, sex, TIV and scanner type were included in the regression as nuisance variables. Statistics threshold was set at an uncorrected p value of 0.001, with a minimum cluster size of 20 voxels.

RESULTS

Abnormal pain perception was significantly greater in the symptomatic C9orf72 expansion carriers compared with controls ($p=0.001$): mean score of 0.40 (SD 0.71) in the C9orf72 group with 9/31 (29%) scoring >0, 0.00 (0.04) in healthy controls with 1/181 (1%) scoring >0. Of the nine people scoring abnormally in the C9orf72 group, seven had bvFTD, one had FTD with amytrophic lateral sclerosis and one had PNFA. No significant difference was found between either the symptomatic GRN (only $1/24=4\%$ scoring >0) or MAPT (only $1/10=10\%$ scoring >0) groups and controls (table 1, online supplementary table 1).

No differences were found in any of the presymptomatic groups compared with controls (table 1, online supplementary table 1).

Altered pain perception in C9orf72 was associated with bilateral atrophy in the posterior part of the thalamus (pulvinar), the striatum (caudate, putamen and nucleus accumbens) and the orbitofrontal cortices, as well as atrophy of the right inferomedial temporal lobe (temporal pole, fusiform gyrus and amygdala) and cerebellum (figure 1, online supplementary table 2).

DISCUSSION

We show that changes in pain perception are a feature of C9orf72 expansion carriers within the GENFI cohort, developing after phenocorversion to the symptomatic period. Such changes were no different to controls in those with GRN and MAPT mutations, and were not seen during the presymptomatic period. Neural correlates of altered pain perception in C9orf72 mutation carriers were regions in the posterior thalamus (pulvinar), striatum and cerebellum as well as both frontal and temporal cortical regions.

The study confirms the previous report in six symptomatic C9orf72 mutation carriers by Fletcher et al, showing that the symptom is present in around one-third of symptomatic carriers within the GENFI cohort, but is not present to a greater extent than a control population in a large group of presymptomatic carriers. Greater awareness of the specific genetic association of this symptom will improve its recognition in clinical practice: we recommend asking about it in all those with a C9orf72 expansion as its presence is not always volunteered.

The association with bilateral thalamic atrophy has been previously reported, although in that study a combination of altered pain and temperature processing was studied. The thalamus is an established pain region involved in affective and sensory signal processing, with afferents conveying pain information via posterolateral thalamic nuclei to the somatosensory cortex and insula. In the current study, the association is seen particularly with the pulvinar nucleus, a posterior region of the thalamus affected particularly in those with C9orf72 expansions in comparison with other forms of FTD.

We also found an association of altered pain perception with other brain regions. The striatum has connections to the thalamus and cortex, and is thought to potentially integrate motor, cognitive, autonomic and emotional responses to pain through this thalamo-cortico-striatal network. The right temporal lobe has been previously implicated in non-verbal sensory semantic (including pain) processing, and the orbitofrontal cortex is thought to affect pain perception through its role in the processing of reward.

In C9orf72 expansion carriers, it is therefore likely that a complex combination of altered

Table 1 Participant demographics

<table>
<thead>
<tr>
<th>Disease stage</th>
<th>Number of participants</th>
<th>Age</th>
<th>Sex (%male)</th>
<th>FTLD-CDR sum of boxes</th>
<th>Abnormal pain perception score</th>
<th>Abnormal pain perception—% with score of 0/0.5/1/2/3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls</td>
<td>181</td>
<td>45.9 (12.5)</td>
<td>44</td>
<td>0.2 (0.7)</td>
<td>0.00 (0.04)</td>
<td>99/1/0/0/0</td>
</tr>
<tr>
<td>C9orf72</td>
<td>Presymptomatic</td>
<td>73</td>
<td>45.6 (11.8)</td>
<td>36</td>
<td>0.2 (0.7)</td>
<td>0.04 (0.26)</td>
</tr>
<tr>
<td>Symptomatic</td>
<td>31</td>
<td>62.5 (7.9)</td>
<td>65</td>
<td>8.9 (6.0)</td>
<td>0.40 (0.71)</td>
<td>71/3/13/13/0</td>
</tr>
<tr>
<td>GRN</td>
<td>Presymptomatic</td>
<td>104</td>
<td>46.5 (12.0)</td>
<td>34</td>
<td>0.1 (0.3)</td>
<td>0.00 (0.00)</td>
</tr>
<tr>
<td>Symptomatic</td>
<td>24</td>
<td>61.7 (10.6)</td>
<td>42</td>
<td>8.6 (6.3)</td>
<td>0.04 (0.20)</td>
<td>96/0/4/0/0</td>
</tr>
<tr>
<td>MAPT</td>
<td>Presymptomatic</td>
<td>39</td>
<td>41.1 (11.0)</td>
<td>38</td>
<td>0.2 (0.6)</td>
<td>0.03 (0.16)</td>
</tr>
<tr>
<td>Symptomatic</td>
<td>10</td>
<td>58.6 (6.8)</td>
<td>50</td>
<td>7.8 (5.6)</td>
<td>0.10 (0.32)</td>
<td>90/0/10/0/0</td>
</tr>
</tbody>
</table>

Age, FTLD-CDR sum of boxes and the abnormal pain perception score are shown as means (SD). CDR, Clinical Dementia Rating.
Figure 1 Neural correlates of abnormal pain perception in C9orf72 mutation carriers. Statistical parametric maps are thresholded at p<0.001 uncorrected. Results are rendered on a study-specific T1-weighted MRI template in MNI space. The colour bar indicates the T-score.

somatosensory, homeostatic, semantic and reward processing underlies the altered perception of pain.

We did not separate out decreased and increased responsiveness in this study, but further studies of genetic FTD should do this, and attempt to understand whether there are specific correlates of these two features. Furthermore, future longitudinal studies that include those that convert from presymptomatic to symptomatic status will allow a clearer timeline of when altered pain perception starts in the disease process of C9orf72-associated FTD.

Author affiliations
1Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
2Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
3Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
4Cognitive Disorders Unit, Department of Neurology, Donostia University Hospital Gipuzkoa Building, San Sebastian, Spain
5Alzheimer’s disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, Institut d’Investigacions Biomediques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
6Centre for Ageing Brain and Neurodegenerative Disorders, Neurology Unit, Clinique Interdisciplinaire de Mémoire (CIM), Hôpital Necker, Paris, France
7McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
8Umeå University, Department of Medical Neurosciences, Umeå, Sweden
9Laboratory of Neurosciences, Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, Lisboa, Portugal
10Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta, Milano, Italy
11Faculty of Medicine, University of Coimbra, Coimbra, Portugal
12Centre of Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
13Department of Psychiatry, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
14McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
15Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
16Clinique Interdisciplinaire de Mémoire (CIME), Département des Sciences Neurologiques du CHU de Québec, Laval University, Quebec, Quebec City, Canada
17Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
18Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
19Department of Genitourinary Medicine, Karolinska University Hospital-Huddinge, Stockholm, Sweden
20La Fondazione IRCCS Ospedale Maggiore Policlinico, Milano, Italy
21Centro Dino Ferrari, University of Milan, Milano, Italy
22Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
23Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario, Canada
24Herlev-Institute for Clinical Brain Research and Center of Neurology, Department of Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany
25German Centre for Neurodegenerative Diseases, Tübingen, Germany
26Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
27Departments of Geriatric Medicine and Nuclear Medicine, University of Duisburg-Essen, Duisburg, Germany
28German Centre for Neurodegenerative Diseases Site Munich, Munich, Germany
29Neurologische Klinik, Ludwig-Maximilians-Universität Munchen, Munchen, Germany
30Department of Neurology, University of Ulm, Ulm, Germany

Twitter Simon Ducharme @sducharme66

Contributors RC, MB and JR contributed to the study design, acquisition, analysis and interpretation of the data as well as drafting and revising the manuscript. All other authors (CVG, KM, DMc, JCVS, FM, RS-V, RJRl, MM, MCT, CG, DG, JBR, EF, MS, RV, AdEm, FT, IS, SD, CRB, AG, IL, AD, MO, JW) contributed to the acquisition of data and study coordination as well as helping to critically review and revise the manuscript.

Competing interests None declared.

Patient consent for publication Not required.

Ethics approval The study was approved by the local ethics committees and all participants gave their consent to take part.

Provenance and peer review Not commissioned; externally peer reviewed.

ORCID iDs
Rhiannon Convery http://orcid.org/0000-0002-9477-1812
Martina Bocchetta http://orcid.org/0000-0003-1814-5024
Caroline V Greaves http://orcid.org/0000-0002-6446-1960
Katrina M Moore http://orcid.org/0000-0002-4458-8390
John Van Swieten http://orcid.org/0000-0001-6278-6844
Barbara Borroni http://orcid.org/0000-0001-9340-9814
James B Rowe http://orcid.org/0000-0001-7216-8679
Elizabeth Finger http://orcid.org/0000-0003-4461-7427
Markus Otto http://orcid.org/0000-0002-6647-5944
Jonathan D Rohrer http://orcid.org/0000-0002-6155-8417

REFERENCES