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AbsTrACT
Objective cognitively engaging lifestyles have been 
associated with reduced risk of conversion to dementia. 
Multiple mechanisms have been advocated, including 
increased brain volumes (ie, brain reserve) and reduced 
disease progression (ie, brain maintenance). In cross-
sectional studies of presymptomatic frontotemporal 
dementia (FTD), higher education has been related to 
increased grey matter volume. here, we examine the 
effect of education on grey matter loss over time.
Methods Two-hundred twenty-nine subjects at-risk 
of carrying a pathogenic mutation leading to FTD 
underwent longitudinal cognitive assessment and T1-
weighted MRI at baseline and at 1 year follow-up. The 
first principal component score of the graph-Laplacian 
principal component analysis on 112 grey matter 
region-of-interest volumes was used to summarise the 
grey matter volume (GMV). The effects of education on 
cognitive performances and GMV at baseline and on the 
change between 1 year follow-up and baseline (slope) 
were tested by structural equation Modelling.
results highly educated at-risk subjects had better 
cognition and higher grey matter volume at baseline; 
moreover, higher educational attainment was associated 
with slower loss of grey matter over time in mutation 
carriers.
Conclusions This longitudinal study demonstrates that 
even in presence of ongoing pathological processes, 
education may facilitate both brain reserve and brain 
maintenance in the presymptomatic phase of genetic 
FTD.

INTrOduCTION
Frontotemporal dementia (FTD) is a neurode-
generative disorder characterised by executive 
dysfunction, personality changes and language 
impairment, along with atrophy of frontal and 
temporal lobes.1 2 FTD has a strong genetic back-
ground with autosomal dominant inheritance in 
around a third of patients. Mutations in Micro-
tubule-Associated Protein Tau (MAPT), Granulin 

(GRN) and chromosome 9 open reading frame 72 
(C9orf72) genes are proven major causes of genetic 
FTD, accounting for 10% to 20% of all FTD cases.3

There is wide variation in the age at onset within 
genes and within families with the same mutation, 
and possible disease modifiers have been recently 
reported. Identification of disease modifiers is key 
to correctly select subjects, reduce heterogeneity 
and increase statistical power of analysis of clin-
ical trials, to stage presymptomatic disease and to 
enable long-term care planning in at-risk subjects.

Genetic variations within Transmembrane Protein 
106B (TMEM106B) have been suggested to modu-
late disease onset in frontotemporal lobar degen-
eration due to transactive response (TAR) DNA 
binding protein 43 proteinopathy,4 5 and more 
recently, glial cell line-derived neurotrophic factor 
(GDNF) Family Receptor Alpha 2 (GFRA2) poly-
morphism and C6orf10/LOC101929163 locus 
have been further implied in affecting the onset in 
GRN and C9orf72 mutation carriers, respectively.6 7

Along with non-modifiable genetic determinants, 
modifiable factors that modulate brain structure 
and function have been identified. For example, 
educational attainment contributes to resilience 
against brain damage in neurodegenerative disor-
ders including Alzheimer’s disease and FTD,8 9 in 
symptomatic and presymptomatic disease stages. 
In particular, it has been shown that higher educa-
tional achievements are associated with greater 
grey matter volumes in presymptomatic subjects 
carrying pathogenic FTD mutations.10 These find-
ings corroborated previous studies in healthy indi-
viduals, in which life exposures, such as educational 
and occupational attainments and engagement in 
leisure and social activities, have been associated 
with decreased risk of developing dementia11 12 and 
with greater brain volumes.13 14

These results argue that education, a proxy 
measure of brain reserve, may postpone FTD 
symptom onset; however, these findings cannot 
give any information on the role of educational 
attainment in counteracting the effect of the 
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Figure 1 Model design of structural equation model. The explanatory 
variable is enclosed in the blue box, while response variables in green 
(grey matter volume) and pink (Mini-Mental examination test) circles. 
For convenience the indicator variables, covariates and error terms are 
not displayed. an arrow from one variable to another indicates that the 
first variable has a causal influence on the latter. Grey arrows indicate 
the tested effect of education on cognitive performances and grey matter 
volumes; orange arrows indicate the tested effect of grey matter volumes 
on cognitive performances at each time point; purple arrows indicate 
the tested effects of baseline measures on slopes’ measures; blue arrows 
indicate the tested interaction effects between slopes and baseline 
measures (see Methods for details). GMV, grey matter volume; i, intercept; 
s, slope; MMse, Mini-Mental state examination.

pathogenic mutation on brain changes over time, that is actively 
coping with pathology progression.15 This concept, called brain 
maintenance, cannot be measured through cross-sectional data, 
but requires longitudinal studies.16 Indeed, if lifetime expo-
sures, such as education, influence brain maintenance in at-risk 
subjects, this would have to be carefully evaluated in defining 
clinical trials’ designs and outcomes and it might itself be consid-
ered an interventional approach.

In the present study, we aimed at evaluating the effect of 
educational attainment on longitudinal grey matter changes and 
cognitive performances in a large cohort of at-risk subjects from 
the Genetic FTD Initiative (GENFI) study.

MeThOds
Participants
Data for this study were drawn from the GENFI multicentre 
cohort study, which consists of 27 research centres across 
Europe and Canada ( www. genfi. org. uk). For the purpose of the 
present study, we included subjects at-risk of carrying mutations 
in C9orf72, MAPT and GRN, as having the proband with mono-
genic FTD17 and for whom both baseline and 1 year follow-up 
MRI was available. Conversion to symptomatic stage at follow-up 
visit or the presence of psychiatric disease or central nervous 
system pathology, including expansive or vascular lesions, were 
considered exclusion criteria.

Between January 2012 and December 2017, 229 at-risk 
subjects fulfilled inclusion/exclusion criteria, namely 116 muta-
tion carriers (C9orf72 n=31, GRN n=65, MAPT n=20) and 113 
mutation non-carriers.

Local ethics committees approved the study at each site and all 
participants provided written informed consent; the study was 
conducted according to the Declaration of Helsinki.

For each subject we recorded demographical data, including 
years of formal schooling (education), past medical history 
and a standardised clinical and neuropsychological assessment, 
as previously published.17 We considered education as reserve 
proxy and Mini-Mental examination (MMSE) raw scores as 
measure of cognitive status.

Furthermore, we considered age, sex and TMEM106B geno-
type (see10 for details), as variables of interest in the statistical 
model.

MrI processing
Participants were scanned at their local site on scanners from 
three different manufacturers (Philips Healthcare, GE Health-
care Life Sciences, Siemens Healthcare Diagnostics). Magnetic 
field strength was 3T for 221 scans (96.5%) and 1.5T for eight 
scans (3.5%). The protocol, designed to match across scanners 
as much as possible, included a volumetrical T1-weighted MRI 
scan, as previously published.17

Baseline and follow-up scans were processed using the stan-
dardised longitudinal voxel-based morphometry pipeline of 
the Computational Anatomy Toolbox (CAT V.12.1, extension 
to SPM12 V.7219 running on MATLAB R2015a) (http://www. 
neuro. uni- jena. de/ cat/).

Baseline and follow-up grey matter volume (GMV) maps were 
parcelled into 112 cortical and subcortical regions (excluding the 
cerebellum because of some subjects with incomplete coverage of 
the inferior cerebellar hemispheres18) according to the maximum 
probability tissue labels derived from the “MICCAI 2012 Grand 
Challenge and Workshop on Multi-Atlas Labelling” (https:// my. 
vanderbilt. edu/ masi/ workshops/). This atlas was created from 
MRI scans belonging to the OASIS project ( www. oasis- brains. 

org/) and labels were provided by Neuromorphometrics, Inc. ( 
www. neuromorphometrics. com/).

Tissue volumes were estimated in the native space, before any 
spatial normalisation. Thus, region of interests (ROIs) values, 
representing the GMV contained in each ROI (expressed in 
millilitres, mL), were further corrected for the total intracranial 
volume (TIV). Estimates of TIV, total GMV, total white matter 
volume (WMV) and total cerebrospinal fluid volume (CSFV) 
were also computed to assess macroscopical differences. Total 
GMV, total WMV and total CSFV were expressed as percentage 
of TIV.

statistical analysis
To overcome the complexity of MRI data, graph-Laplacian 
Principal Component Analysis (gLPCA) was applied to obtain 
a low dimensional representation of grey matter parcellation at 
baseline and at follow-up,10 which incorporated graph structure. 
gLPCA has several advantages compared with principal compo-
nent analysis: (i) it is modelled on the representation of the data, 
(ii) it can be easily calculated, presenting a compact closed-form 
solution and (iii) it allows noise removal. The first principal 
component score (PC1) was used to summarise GMV at each 
time point. A correlation threshold higher than 0.6 was used to 
define PC1, which was constituted by 100 ROIs belonging to 
frontal, cingulate, temporal and parietal regions.

Successively, a two-group structural equation modelling (SEM) 
was fitted on longitudinal data.

SEM is a multivariate regression technique that models the 
covariance structure of a set of observed and latent (random 
effects) variables, and is based on a subset of possible paths 
connecting those variables, incorporating directional informa-
tion (regression coefficients) and bi-directional information 
(covariance).
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Table 1 Demographical characteristics and brain volumes of the 
cohort

Variables
Mutation 
carriers

Mutation non-
carriers

P 
value*

No of subjects

  All 116 113 –

  C9orf72, % 26.7 –

  GRN, % 56.0 –

  MAPT, % 17.2 –

Sex, female % 60.3 58.4 n.s.†

Education, years 14.4±3.4 14.0±3.2 n.s.

Age at baseline visit, years 45.7±11.2 49.2±14.0 0.036

Age at follow-up visit, years 47.1±11.3 50.6±14.1 0.038

Expected age at onset, years‡ −12.1±11.5 – –

MMSE, baseline 29.4±1.2 29.4±0.9 n.s.

MMSE, follow-up 29.3±1.1 29.4±1.0 n.s.

TIV baseline, mL 1498±151 1490±123 n.s.

TIV follow-up, mL 1500±141 1492±128 n.s.

Total GMV baseline, % 42.8±3.5 42.7±3.7 n.s.

Total GMV follow-up, % 42.6±3.7 42.6±3.6 n.s.

Total WMV baseline, % 34.0±2.5 33.6±2.5 n.s.

Total WMV follow-up, % 33.7±2.5 33.6±2.7 n.s.

Total CSFV baseline, % 23.1±4.8 23.7±4.8 n.s.

Total CSFV follow-up, % 23.7±4.9 23.9±4.9 n.s.

P refers to mutation carriers versus mutation non-carriers comparisons; no 
significant differences between baseline versus follow-up MMSE scores and brain 
volumes in both mutation non-carriers and in mutation carriers were found. Results 
are expressed as mean±SD, unless otherwise specified.
*Two sample t-test, otherwise specified.
†Fisher’s exact test.
‡computed as previously published.17

CSFV, cerebrospinal fluid volume;C9orf72, chromosome 9 open reading frame 72; 
GMV, grey matter volume;GRN, Granulin; MAPT, Microtubule-Associated Protein 
Tau; MMSE, Mini-Mental State Examination; TIV, total intracranial volume; WMV, 
white matter volume;mL, millilitre; n.s., not significant.

The study design was reported in figure 1. We considered 
mutation carriers and mutation non-carriers separately. In 
the two groups, the effect of education was evaluated on: (a) 
cognitive performances (as measured by MMSE) at baseline, (b) 
GMV (as measured by PC1) at baseline, (c) the slope of cogni-
tive performances between 1 year follow-up and baseline and 
(d) the slope of GMV between 1 year follow-up and baseline. 
Moreover, we evaluated the effect of: (e) GMV at baseline on 
the cognitive performances at baseline, (f) GMV at baseline on 
the slope of cognitive performances, (g) the slope of GMV on 
the slope of cognitive performances and (h) the cognitive perfor-
mances at baseline on the slope of GMV. Finally, we evaluated 
the covariance between: (i) the baseline and the slope of cogni-
tive performances and (j) the baseline and the slope of GMV.

Regression effects were adjusted by observed covari-
ates, namely age and sex; in view of previous evidence for 
TMEM106B polymorphism effect on GMV in presymptomatic 
mutation carriers,10 we also considered TMEM106B genotype 
(rs1990622 T/T, T/C, C/C, recorded using addictive coding 
0,1,2), as covariate.

We did not include random effects (latent covariates), such 
as family’s pedigree and Country, on the basis of an initial 
exploratory analysis that indicated no significant effects of these 
variables.

Baseline and follow-up demographical, cognitive and volu-
metrical variables were compared across groups using inde-
pendent t-test or paired sample t-test for continuous variables 
and Fisher’s exact tests for dichotomous variables. Exploratory 
Random Effect Models was performed by “lme4” R package. 
SEM analysis was performed via “lavaan” R package, using full 
information maximum likelihood method for simultaneously 
estimating SEM parameters and imputing MMSE score and 
TMEM106B genotype random missing values. In addition, for 
quality control, MMSE score and TMEM106B genotype missing 
values were imputed with non-parametric random forest impu-
tation procedure of the “missForest” R package, and imputed 
data matrix was successively used for SEM analysis. Two-group 
SEM analysis was performed by an overall likelihood ratio test 
(LRT) of two SEM models: model (1) with unequal regression 
coefficients, and residual (co)variances in the two groups versus 
model (0) with equal regression coefficients, and residual (co)
variances. Finally, a model (2) was fitted considering the group 
as covariate and adding the interaction terms education*group 
and TMEM*group, for evaluating the statistical significance of 
the regression coefficient differences between the two-groups. P 
values less than 0.05 were considered significant.

resulTs
Demographical characteristics of at-risk asymptomatic subjects, 
that is, mutation carriers and mutation non-carriers, are reported 
in table 1. Non-carriers were older than carriers (p=0.036); 
no other significant differences were found in sex, years of 
schooling, MMSE at baseline and brain volumes at baseline 
between groups. No significant group-wise differences were 
found in MMSE and brain volumes changes at 1 year follow-up 
in either carriers or non-carriers.

SEM fitting results are shown in table 2 and figure 2. Overall, 
the two-group models' difference was statistically significant 
(LRT=34.3, df=20, p value=0.019).

In mutation carriers, significant direct effects of education on 
cognitive performances (as measured by MMSE) and on GMV at 
baseline (as measured by PC1, which summarised ROI measures) 
were found (beta=0.349, 95% CI = 0.047 to 0.650, p=0.023 

and beta=0.284, 95% CI = 0.047 to 0.521, p=0.019, respec-
tively). Moreover, education had a significant inverse effect 
on GMV slope (beta=−0.270, 95% CI = −0.501 to −0.041, 
p=0.021), the higher the years of formal schooling the lower the 
loss of GMV at follow-up.

No significant effect of education on cognitive performances’ 
slope at 1 year follow-up was observed (beta=0.125, 95% CI = 
−0.174 to 0.423, p=0.413). No direct effect (p>0.05) between 
baseline and slopes of cognitive performances and GMV was 
observed, while expected significant negative covariances 
were confirmed (cov=−0.636, 95% CI = −0.869 to −0.402, 
p<0.001 and cov=−0.305, 95% CI = −0.444 to −0.166, 
p<0.001 for cognitive performances and GMV, respectively).

These above effects were similarly present in non-carriers, 
with the distinctive difference for the null effect of education 
on GMV slope (beta=−0.020, 95% CI = −0.181 to 0.140, 
p=0.806). Notably, in mutation non-carriers, the significant 
direct effect of education on cognitive performances was greater 
(two-fold) than in mutation carriers (beta=0.548, 95% CI = 
0.289 to 0.807, p<0.001). Nevertheless, the two-group beta 
differences (the two-way interaction effect) was statistically 
suggestive in the combined group SEM analysis (p=0.088).

In addition, a significant covariate effect of TMEM106B geno-
type was observed in mutation carriers, and it was not shown 
in mutation non-carriers (the two-way interaction testing was 
statistically significant: p=0.041), confirming the previous 
evidence10 of the modulating effect of TMEM106B genotype on 
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Table 2 Structural equation model in mutation carriers and mutation non-carriers

Variable

Mutation carriers Mutation non-carriers

estimate se z value P value estimate se z value P value

MMSE, baseline 

GMV baseline 0.074 0.115 0.644 0.520 −0.025 0.110 −0.231 0.817

Sex −0.003 0.208 −0.014 0.989 −0.058 0.163 −0.355 0.723

Age −0.160 0.100 −1.599 0.110 0.006 0.076 0.078 0.938

TMEM106B 0.147 0.184 0.797 0.425 0.058 0.129 0.447 0.655

Education 0.349 0.153 2.279 0.023 0.548 0.132 4.145 <0.001

MMSE, slope 

GMV baseline 0.092 0.122 0.748 0.454 0.101 0.153 0.661 0.509

GMV slope 0.141 0.109 1298 0.194 0.123 0.185 0.668 0.504

Sex 0.117 0.208 0.561 0.575 −0.370 0.207 −1.787 0.074

Age 0.098 0.102 0.961 0.336 −0.200 0.099 −2.013 0.044

TMEM106B 0.086 0.182 0.470 0.639 −0.249 0.162 −1.533 0.125

Education 0.125 0.152 0.818 0.413 −0.307 0.166 −1.849 0.065

GMV, baseline 

Sex 0.104 0.168 0.619 0.536 −0.020 0.140 −0.145 0.884

Age −0.386 0.072 −5.333 <0.001 −0.428 0.051 −8.424 <0.001

TMEM106B 0.468 0.142 3.287 0.001 0.086 0.110 0.778 0.437

Education 0.284 0.121 2.347 0.019 0.277 0.110 2.515 0.012

GMV, slope 

MMSE baseline −0.043 0.064 −0.664 0.507 −0.017 0.049 −0343 0.731

Sex −0.357 0.160 −2.235 0.025 −0.178 0.098 −1.814 0.070

Age −0.060 0.070 −0.857 0.392 −0.009 0.036 −0.256 0.798

TMEM106B −0.072 0.136 −0.582 0.597 0.034 0.078 0.433 0.665

Education −0.270 0.117 −2.303 0.021 −0.020 0.082 −0.246 0.806

Covariances 

MMSE baseline with MMSE slope −0.636 0.119 5.340 <0.001 −0.514 0.096 −5.375 <0.001

GMV baseline with GMV slope −0.305 0.071 4.309 <0.001 −0–186 0.038 −4.860 <0.001

Significant results of educational attainment’s effect in boldface.
. GMV, grey matter volume;MMSE, Mini-Mental State examination; z value, estimate/SE.

Figure 2 significant results from the structural equation model. 
significant effects in either mutation carriers and non-carriers are depicted 
by dark grey arrows, while significant effects only in mutation carriers are 
depicted by light grey arrows (see Results section for details). GMV, grey 
matter volume; i, intercept; s, slope; MMse, Mini-Mental state examination.

GMV in presymptomatic FTD (beta=0.468, 95% CI = 0.189 to 
0.747, p=0.001 and beta=0.034, 95% CI = −0.119 to 0.186, 
p=0.665 for mutation carriers and non-carriers, respectively).

dIsCussION
Genetic FTD is preceded by a long period in which, despite the 
evidence of initial changes in biomarkers and brain structure, 
behaviour and cognition are spared.17 19–21

Pharmacological and non-pharmacological interventions 
may provide better clinical outcomes if applied in this phase, 
when the brain can still cope with pathology processes, and 
such treatments may eventually delay disease onset.22 Beyond 
future disease-modifying drugs,23 the possibility to intervene on 
environment and other modulating factors is attractive. Some 
evidence shows that cognitive stimulating environments lead 
to brain volumetrical advantages and better cognitive perfor-
mances. These effects are common to physiological24–26 and 
initial pathological ageing,27–29 suggesting that neuroplasticity 
is maintained even in diseased brains, regardless of the specific 
clinical picture or the underlying pathological process.

Two alternate hypotheses address this issue. First, that lifestyle 
acts passively by increasing brain volume, but does not influence 
on brain loss; second, lifestyle acts by increasing brain mainte-
nance. To test the latter hypothesis longitudinal data is required. 
These positive effects may diminish as disease progresses to the 
symptomatic phase. If this second hypotheses were the case, it 
would be plausible to think of modulating the disease course of 
dementing disorders by enrichment of lifetime exposures.

In the current longitudinal study, we applied SEM analysis to 
test these hypotheses in presymptomatic monogenic FTD, evalu-
ating the effect of the educational level on two outcome measures 
of reserve: cognitive performances and grey matter volumes. 
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Our results seem to confirm the latter hypothesis, showing 
that higher education confers higher grey matter volumes and 
greater brain maintenance over time. Additionally, as previously 
reported,10 30 TMEM106B genotype significantly modulates grey 
matter volume at baseline in mutation carriers.

These findings are in line with previous longitudinal studies 
demonstrating that reserve proxies are associated with reduced 
rate of hippocampal atrophy,31 32 reduced rate of brain hypome-
tabolism33 and cerebrospinal fluid biomarkers changes33 in 
healthy agers and Alzheimer’s disease.

One intriguing aspect of brain maintenance is that it may 
reflect differences in the accumulation of pathology-related 
changes.34 35 Such demonstration in FTD requires in vivo 
pathological markers (ie, tau or TDP-43 tracers), which are not 
currently available.36 This neuroprotective effect may be related 
to changes at the molecular level, such as increased levels of 
neurotrophic factors37 and glutamate neurotransmission,38 or 
at the cellular level, with increased neurogenesis,39 synaptogen-
esis40 and angiogenesis,41 and might be able to go beyond the 
underlying pathogenic mechanisms related to the specific muta-
tion (GRN, C9ORF72, MAPT) or to specific proteinopathy (ie, 
TDP-43 or tau).

Interestingly, as previously reported,10 years of education 
had a significant effect on grey matter volume even in mutation 
non-carriers, supporting the idea of a generalisable beneficial 
effect of education. Conversely, in the present work, we did not 
find any effect of education on brain maintenance in mutation 
non-carriers, but we recognise that this could be likely due to the 
low variance of grey matter volume within 1 year follow-up in 
healthy subjects. However, longer follow-up is necessary to draw 
definitive conclusions.

Regarding cognition, higher education led to better cognitive 
performances at baseline, but not to significant effects on cogni-
tive decline. This effect was comparable in mutation carriers and 
mutation non-carriers; of note, in subjects without pathogenic 
mutations, the beneficial effect of education on cognitive perfor-
mances was greater than in mutation carriers.

We acknowledge that this study entails some limitations. 
Despite that education represents an environmental factor, it 
is often immutable because acquired in childhood/young adult-
hood. Thus, the present results do not allow to directly conclude 
that interventional trials could delay disease onset. However, 
education is known to influence professional attainment, 
which has been already proven a proxy measure of reserve in 
FTD.9 42 Also, we chose MMSE as a global measure of cogni-
tion, acknowledging that MMSE is affected only close to disease 
onset17 and that it does not represent the best measure of severity 
even in symptomatic phases.43 Thus, the effect of more sensitive 
neuropsychological tests17 has to be evaluated in future studies, 
especially to assess changes of cognitive performances over time. 
Moreover, we could not test the effect of educational attainment 
in each mutation due to low sample number: larger samples are 
needed to address this issue. Last, due to the observational nature 
of the study, data on possible confounders, such as concomitant 
vascular risk factors, were not available. However, in a recent 
large-scale Mendelian randomisation study of the related condi-
tion, that is amyotrophic lateral sclerosis, the authors confirmed 
educational attainment to be an important modulator based on 
genetics.44

In conclusion, these findings extend our knowledge of the 
reserve theory, demonstrating that in presymptomatic FTD the 
rate of atrophy was influenced by the educational level, with 
reduced grey matter loss in more educated subjects. Thus, even 
in presence of an ongoing pathological process, presymptomatic 

FTD subjects still maintain a high-performing reserve like in 
healthy brains, virtually turning back the clock of the disease 
natural history. The demonstration that differences in early life-
style may slow down later disease progression suggests that even 
in monogenic disorders, outcomes are not wholly determined 
from birth, and this opens exciting perspectives for eventually 
delaying symptom onset. Future confirmatory studies assessing 
the role of other reserve proxies and their effect on longitudinal 
brain changes in symptomatic monogenic and sporadic FTD are 
needed.
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